Dan Fu
commited on
Commit
•
0a2b9f1
1
Parent(s):
536efaf
Automodel
Browse files- README.md +37 -5
- bert_layers.py +986 -0
- bert_padding.py +153 -0
- blockdiag_linear.py +73 -0
- blockdiag_multiply.py +82 -0
- config.json +46 -2
- configuration_bert.py +75 -0
- generation_config.json +6 -0
- hyena_utils.py +259 -0
- monarch_mixer_sequence_mixer.py +156 -0
- model.bin → pytorch_model.bin +0 -0
- structured_linear.py +70 -0
README.md
CHANGED
@@ -2,15 +2,47 @@
|
|
2 |
license: apache-2.0
|
3 |
language:
|
4 |
- en
|
5 |
-
pipeline_tag:
|
|
|
6 |
---
|
7 |
|
8 |
# Monarch Mixer-BERT
|
9 |
|
10 |
-
|
11 |
-
This model has been
|
12 |
-
Note (11/3 evening): this is a partial checkpoint, this one had not finished training before upload.
|
13 |
|
14 |
-
|
|
|
|
|
15 |
|
16 |
Check out our [GitHub](https://github.com/HazyResearch/m2/tree/main) for instructions on how to download and fine-tune it!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
language:
|
4 |
- en
|
5 |
+
pipeline_tag: fill-mask
|
6 |
+
inference: false
|
7 |
---
|
8 |
|
9 |
# Monarch Mixer-BERT
|
10 |
|
11 |
+
An 80M checkpoint of M2-BERT, pretrained with sequence length 32768.
|
12 |
+
**This is a BERT-style model that has not been fine-tuned. We recommend fine-tuning it for specific use cases before using it.**
|
|
|
13 |
|
14 |
+
Check out the paper [Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture](https://arxiv.org/abs/2310.12109) and our [blog post]() on retrieval for more on how we trained this model for long sequence.
|
15 |
+
|
16 |
+
This model was trained by Jon Saad-Falcon, Dan Fu, and Simran Arora.
|
17 |
|
18 |
Check out our [GitHub](https://github.com/HazyResearch/m2/tree/main) for instructions on how to download and fine-tune it!
|
19 |
+
|
20 |
+
## How to use
|
21 |
+
|
22 |
+
You can load this model using Hugging Face `AutoModel`:
|
23 |
+
```python
|
24 |
+
from transformers import AutoModelForMaskedLM
|
25 |
+
model = AutoModelForMaskedLM.from_pretrained(
|
26 |
+
"togethercomputer/m2-bert-80M-32k-retrieval",
|
27 |
+
trust_remote_code=True
|
28 |
+
)
|
29 |
+
```
|
30 |
+
|
31 |
+
You should expect to see a large error message about unused parameters for FlashFFTConv.
|
32 |
+
If you'd like to load the model with FlashFFTConv, you can check out our [GitHub](https://github.com/HazyResearch/m2/tree/main).
|
33 |
+
|
34 |
+
## Acknowledgments
|
35 |
+
|
36 |
+
Alycia Lee helped with AutoModel support.
|
37 |
+
|
38 |
+
## Citation
|
39 |
+
|
40 |
+
If you use this model, or otherwise found our work valuable, you can cite us as follows:
|
41 |
+
```
|
42 |
+
@inproceedings{fu2023monarch,
|
43 |
+
title={Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture},
|
44 |
+
author={Fu, Daniel Y and Arora, Simran and Grogan, Jessica and Johnson, Isys and Eyuboglu, Sabri and Thomas, Armin W and Spector, Benjamin and Poli, Michael and Rudra, Atri and R{\'e}, Christopher},
|
45 |
+
booktitle={Advances in Neural Information Processing Systems},
|
46 |
+
year={2023}
|
47 |
+
}
|
48 |
+
```
|
bert_layers.py
ADDED
@@ -0,0 +1,986 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
2 |
+
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
# Copyright (c) 2022, Tri Dao.
|
4 |
+
# Copyright (c) 2023, MosaicML.
|
5 |
+
# Copyright (c) 2023, Dan Fu and Simran Arora.
|
6 |
+
|
7 |
+
import copy
|
8 |
+
import logging
|
9 |
+
import math
|
10 |
+
import os
|
11 |
+
import sys
|
12 |
+
import warnings
|
13 |
+
from typing import List, Optional, Tuple, Union
|
14 |
+
from functools import partial
|
15 |
+
|
16 |
+
# Add folder root to path to allow us to use relative imports regardless of what directory the script is run from
|
17 |
+
# sys.path.append(os.path.dirname(os.path.realpath(__file__)))
|
18 |
+
|
19 |
+
from .bert_padding import (index_first_axis,
|
20 |
+
index_put_first_axis, pad_input,
|
21 |
+
unpad_input, unpad_input_only)
|
22 |
+
import torch
|
23 |
+
import torch.nn as nn
|
24 |
+
from einops import rearrange
|
25 |
+
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
|
26 |
+
from transformers.activations import ACT2FN
|
27 |
+
from transformers.modeling_outputs import (MaskedLMOutput,
|
28 |
+
SequenceClassifierOutput)
|
29 |
+
from transformers.models.bert.modeling_bert import BertPreTrainedModel
|
30 |
+
|
31 |
+
from .blockdiag_linear import BlockdiagLinear
|
32 |
+
from .monarch_mixer_sequence_mixer import MonarchMixerSequenceMixing
|
33 |
+
|
34 |
+
logger = logging.getLogger(__name__)
|
35 |
+
|
36 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
37 |
+
torch.backends.cudnn.allow_tf32 = True
|
38 |
+
|
39 |
+
class BertEmbeddings(nn.Module):
|
40 |
+
"""Construct the embeddings for words, ignoring position.
|
41 |
+
|
42 |
+
There are no positional embeddings since we use ALiBi and token_type
|
43 |
+
embeddings.
|
44 |
+
|
45 |
+
This module is modeled after the Hugging Face BERT's
|
46 |
+
:class:`~transformers.model.bert.modeling_bert.BertEmbeddings`, but is
|
47 |
+
modified as part of Mosaic BERT's ALiBi implementation. The key change is
|
48 |
+
that position embeddings are removed. Position information instead comes
|
49 |
+
from attention biases that scale linearly with the position distance
|
50 |
+
between query and key tokens.
|
51 |
+
|
52 |
+
This module ignores the `position_ids` input to the `forward` method.
|
53 |
+
"""
|
54 |
+
|
55 |
+
def __init__(self, config):
|
56 |
+
super().__init__()
|
57 |
+
self.word_embeddings = nn.Embedding(config.vocab_size,
|
58 |
+
config.hidden_size,
|
59 |
+
padding_idx=config.pad_token_id)
|
60 |
+
# ALiBi doesn't use position embeddings
|
61 |
+
if config.use_positional_encodings:
|
62 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
63 |
+
self.use_positional_encodings = config.use_positional_encodings
|
64 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size,
|
65 |
+
config.hidden_size)
|
66 |
+
|
67 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model
|
68 |
+
# variable name and be able to load any TensorFlow checkpoint file
|
69 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size,
|
70 |
+
eps=config.layer_norm_eps)
|
71 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
72 |
+
if config.use_positional_encodings:
|
73 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
74 |
+
self.register_buffer('token_type_ids',
|
75 |
+
torch.zeros(config.max_position_embeddings,
|
76 |
+
dtype=torch.long),
|
77 |
+
persistent=False)
|
78 |
+
|
79 |
+
def forward(
|
80 |
+
self,
|
81 |
+
input_ids: Optional[torch.LongTensor] = None,
|
82 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
83 |
+
position_ids: Optional[torch.LongTensor] = None,
|
84 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
85 |
+
past_key_values_length: int = 0,
|
86 |
+
return_position_encodings: bool = False,
|
87 |
+
) -> torch.Tensor:
|
88 |
+
if (input_ids is not None) == (inputs_embeds is not None):
|
89 |
+
raise ValueError('Must specify either input_ids or input_embeds!')
|
90 |
+
if input_ids is not None:
|
91 |
+
input_shape = input_ids.size()
|
92 |
+
else:
|
93 |
+
assert inputs_embeds is not None # just for type checking
|
94 |
+
input_shape = inputs_embeds.size()[:-1]
|
95 |
+
|
96 |
+
seq_length = input_shape[1]
|
97 |
+
|
98 |
+
if position_ids is None:
|
99 |
+
if self.use_positional_encodings:
|
100 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
101 |
+
|
102 |
+
# Setting the token_type_ids to the registered buffer in constructor
|
103 |
+
# where it is all zeros, which usually occurs when it's auto-generated;
|
104 |
+
# registered buffer helps users when tracing the model without passing
|
105 |
+
# token_type_ids, solves issue #5664
|
106 |
+
if token_type_ids is None:
|
107 |
+
if hasattr(self, 'token_type_ids'):
|
108 |
+
assert isinstance(self.token_type_ids, torch.LongTensor)
|
109 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
110 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
|
111 |
+
input_shape[0], seq_length)
|
112 |
+
token_type_ids = buffered_token_type_ids_expanded # type: ignore
|
113 |
+
else:
|
114 |
+
token_type_ids = torch.zeros(input_shape, # type: ignore
|
115 |
+
dtype=torch.long,
|
116 |
+
device=self.word_embeddings.device) # type: ignore # yapf: disable
|
117 |
+
|
118 |
+
if inputs_embeds is None:
|
119 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
120 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
121 |
+
|
122 |
+
embeddings = inputs_embeds + token_type_embeddings
|
123 |
+
if self.use_positional_encodings:
|
124 |
+
position_embeddings = self.position_embeddings(position_ids)
|
125 |
+
embeddings += position_embeddings
|
126 |
+
embeddings = self.LayerNorm(embeddings)
|
127 |
+
embeddings = self.dropout(embeddings)
|
128 |
+
if return_position_encodings:
|
129 |
+
return embeddings, position_embeddings
|
130 |
+
else:
|
131 |
+
return embeddings
|
132 |
+
|
133 |
+
class BertMLP(nn.Module):
|
134 |
+
"""Applies the FFN at the end of each BERT layer."""
|
135 |
+
|
136 |
+
def __init__(self, config):
|
137 |
+
super().__init__()
|
138 |
+
self.config = config
|
139 |
+
|
140 |
+
if self.config.use_monarch_mlp:
|
141 |
+
linear_cls = partial(BlockdiagLinear, nblocks=self.config.monarch_mlp_nblocks)
|
142 |
+
else:
|
143 |
+
linear_cls = nn.Linear
|
144 |
+
|
145 |
+
self.gated_layers = linear_cls(config.hidden_size,
|
146 |
+
config.intermediate_size,
|
147 |
+
bias=False)
|
148 |
+
self.act = nn.GELU(approximate='none')
|
149 |
+
self.wo = linear_cls(config.intermediate_size, config.hidden_size)
|
150 |
+
|
151 |
+
self.layernorm = nn.LayerNorm(config.hidden_size,
|
152 |
+
eps=config.layer_norm_eps)
|
153 |
+
|
154 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
155 |
+
|
156 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
157 |
+
"""Compute new hidden states from current hidden states.
|
158 |
+
|
159 |
+
Args:
|
160 |
+
hidden_states (torch.Tensor): The (unpadded) hidden states from
|
161 |
+
the attention layer [nnz, dim].
|
162 |
+
"""
|
163 |
+
|
164 |
+
residual_connection = hidden_states
|
165 |
+
hidden_states = self.gated_layers(hidden_states)
|
166 |
+
hidden_states = self.act(hidden_states)
|
167 |
+
hidden_states = self.dropout(hidden_states)
|
168 |
+
hidden_states = self.wo(hidden_states)
|
169 |
+
hidden_states = self.layernorm(hidden_states + residual_connection)
|
170 |
+
return hidden_states
|
171 |
+
|
172 |
+
|
173 |
+
class BertGatedLinearUnitMLP(nn.Module):
|
174 |
+
"""Applies the FFN at the end of each BERT layer with a Gated Linear Unit"""
|
175 |
+
|
176 |
+
def __init__(self, config):
|
177 |
+
super().__init__()
|
178 |
+
self.config = config
|
179 |
+
|
180 |
+
self.is_padded = True
|
181 |
+
|
182 |
+
if self.config.use_monarch_mlp:
|
183 |
+
linear_cls = partial(BlockdiagLinear, nblocks=self.config.monarch_mlp_nblocks)
|
184 |
+
else:
|
185 |
+
linear_cls = nn.Linear
|
186 |
+
self.gated_layers = linear_cls(
|
187 |
+
config.hidden_size,
|
188 |
+
config.intermediate_size * 2,
|
189 |
+
bias=False
|
190 |
+
)
|
191 |
+
self.act = nn.GELU(approximate='none')
|
192 |
+
self.wo = linear_cls(config.intermediate_size, config.hidden_size)
|
193 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
194 |
+
self.layernorm = nn.LayerNorm(config.hidden_size,
|
195 |
+
eps=config.layer_norm_eps)
|
196 |
+
|
197 |
+
|
198 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
199 |
+
"""Compute new hidden states from current hidden states.
|
200 |
+
|
201 |
+
Args:
|
202 |
+
hidden_states (torch.Tensor): The (unpadded) hidden states from
|
203 |
+
the attention layer [nnz, dim].
|
204 |
+
"""
|
205 |
+
|
206 |
+
residual_connection = hidden_states
|
207 |
+
# compute the activation
|
208 |
+
hidden_states = self.gated_layers(hidden_states)
|
209 |
+
|
210 |
+
if self.is_padded:
|
211 |
+
gated = hidden_states[:, :, :self.config.intermediate_size]
|
212 |
+
non_gated = hidden_states[:, :, self.config.intermediate_size:]
|
213 |
+
else:
|
214 |
+
gated = hidden_states[:, :self.config.intermediate_size]
|
215 |
+
non_gated = hidden_states[:, self.config.intermediate_size:]
|
216 |
+
|
217 |
+
hidden_states = self.act(gated) * non_gated
|
218 |
+
hidden_states = self.dropout(hidden_states)
|
219 |
+
# multiply by the second matrix
|
220 |
+
hidden_states = self.wo(hidden_states)
|
221 |
+
# add the residual connection and post-LN
|
222 |
+
hidden_states = self.layernorm(hidden_states + residual_connection)
|
223 |
+
|
224 |
+
return hidden_states
|
225 |
+
|
226 |
+
|
227 |
+
class BertLayer(nn.Module):
|
228 |
+
"""BERT layer, which includes Sequence Mixing (e.g. Hyena) and State Mixing (e.g. MLP)."""
|
229 |
+
|
230 |
+
def __init__(self, config):
|
231 |
+
super(BertLayer, self).__init__()
|
232 |
+
|
233 |
+
mm_cls = MonarchMixerSequenceMixing
|
234 |
+
self.attention = mm_cls(
|
235 |
+
config.hidden_size,
|
236 |
+
l_max=config.long_conv_l_max,
|
237 |
+
hyena_kernel_lr=config.long_conv_kernel_learning_rate,
|
238 |
+
bidirectional=config.bidirectional,
|
239 |
+
|
240 |
+
hyena_lr_pos_emb=config.hyena_lr_pos_emb,
|
241 |
+
hyena_w=config.hyena_w,
|
242 |
+
hyena_w_mod=config.hyena_w_mod,
|
243 |
+
hyena_wd=config.hyena_wd,
|
244 |
+
hyena_emb_dim=config.hyena_emb_dim,
|
245 |
+
hyena_filter_dropout=config.hyena_filter_dropout,
|
246 |
+
hyena_filter_order=config.hyena_filter_order,
|
247 |
+
residual_long_conv=config.residual_long_conv,
|
248 |
+
hyena_training_additions=config.hyena_training_additions,
|
249 |
+
)
|
250 |
+
|
251 |
+
if config.use_glu_mlp:
|
252 |
+
self.mlp = BertGatedLinearUnitMLP(config)
|
253 |
+
else:
|
254 |
+
self.mlp = BertMLP(config)
|
255 |
+
|
256 |
+
def forward(
|
257 |
+
self,
|
258 |
+
hidden_states: torch.Tensor,
|
259 |
+
cu_seqlens: torch.Tensor,
|
260 |
+
seqlen: int,
|
261 |
+
subset_idx: Optional[torch.Tensor] = None,
|
262 |
+
indices: Optional[torch.Tensor] = None,
|
263 |
+
attn_mask: Optional[torch.Tensor] = None,
|
264 |
+
bias: Optional[torch.Tensor] = None,
|
265 |
+
) -> torch.Tensor:
|
266 |
+
"""Forward pass for a BERT layer, including both attention and MLP.
|
267 |
+
|
268 |
+
Args:
|
269 |
+
hidden_states: (total_nnz, dim)
|
270 |
+
cu_seqlens: (batch + 1,)
|
271 |
+
seqlen: int
|
272 |
+
subset_idx: () set of indices whose values we care about at the end of the layer
|
273 |
+
(e.g., the masked tokens, if this is the final layer).
|
274 |
+
indices: None or (total_nnz,)
|
275 |
+
attn_mask: None or (batch, max_seqlen_in_batch)
|
276 |
+
bias: None or (batch, heads, max_seqlen_in_batch, max_seqlen_in_batch)
|
277 |
+
"""
|
278 |
+
|
279 |
+
attention_output = self.attention(hidden_states)
|
280 |
+
if type(attention_output) == tuple:
|
281 |
+
attention_output, _ = attention_output
|
282 |
+
|
283 |
+
layer_output = self.mlp(attention_output)
|
284 |
+
|
285 |
+
return layer_output
|
286 |
+
|
287 |
+
|
288 |
+
class BertEncoder(nn.Module):
|
289 |
+
"""A stack of BERT layers providing the backbone of BERT.
|
290 |
+
|
291 |
+
Compared to the analogous Hugging Face BERT module, this module handles unpadding to reduce unnecessary computation
|
292 |
+
at padded tokens, and pre-computes attention biases to implement ALiBi.
|
293 |
+
"""
|
294 |
+
|
295 |
+
def __init__(self, config):
|
296 |
+
super().__init__()
|
297 |
+
layer = BertLayer(config)
|
298 |
+
self.layer = nn.ModuleList(
|
299 |
+
[copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
|
300 |
+
|
301 |
+
self.num_attention_heads = config.num_attention_heads
|
302 |
+
|
303 |
+
def rebuild_alibi_tensor(self,
|
304 |
+
size: int,
|
305 |
+
device: Optional[Union[torch.device, str]] = None):
|
306 |
+
# Alibi
|
307 |
+
# Following https://github.com/ofirpress/attention_with_linear_biases/issues/5 (Implementation 1)
|
308 |
+
# In the causal case, you can exploit the fact that softmax is invariant to a uniform translation
|
309 |
+
# of the logits, which makes the math work out *after* applying causal masking. If no causal masking
|
310 |
+
# will be applied, it is necessary to construct the diagonal mask.
|
311 |
+
n_heads = self.num_attention_heads
|
312 |
+
|
313 |
+
def _get_alibi_head_slopes(n_heads: int) -> List[float]:
|
314 |
+
|
315 |
+
def get_slopes_power_of_2(n_heads: int) -> List[float]:
|
316 |
+
start = (2**(-2**-(math.log2(n_heads) - 3)))
|
317 |
+
ratio = start
|
318 |
+
return [start * ratio**i for i in range(n_heads)]
|
319 |
+
|
320 |
+
# In the paper, they only train models that have 2^a heads for some a. This function
|
321 |
+
# has some good properties that only occur when the input is a power of 2. To
|
322 |
+
# maintain that even when the number of heads is not a power of 2, we use a
|
323 |
+
# workaround.
|
324 |
+
if math.log2(n_heads).is_integer():
|
325 |
+
return get_slopes_power_of_2(n_heads)
|
326 |
+
|
327 |
+
closest_power_of_2 = 2**math.floor(math.log2(n_heads))
|
328 |
+
slopes_a = get_slopes_power_of_2(closest_power_of_2)
|
329 |
+
slopes_b = _get_alibi_head_slopes(2 * closest_power_of_2)
|
330 |
+
slopes_b = slopes_b[0::2][:n_heads - closest_power_of_2]
|
331 |
+
return slopes_a + slopes_b
|
332 |
+
|
333 |
+
context_position = torch.arange(size, device=device)[:, None]
|
334 |
+
memory_position = torch.arange(size, device=device)[None, :]
|
335 |
+
relative_position = torch.abs(memory_position - context_position)
|
336 |
+
# [n_heads, max_token_length, max_token_length]
|
337 |
+
relative_position = relative_position.unsqueeze(0).expand(
|
338 |
+
n_heads, -1, -1)
|
339 |
+
slopes = torch.Tensor(_get_alibi_head_slopes(n_heads)).to(device)
|
340 |
+
alibi = slopes.unsqueeze(1).unsqueeze(1) * -relative_position
|
341 |
+
# [1, n_heads, max_token_length, max_token_length]
|
342 |
+
alibi = alibi.unsqueeze(0)
|
343 |
+
assert alibi.shape == torch.Size([1, n_heads, size, size])
|
344 |
+
|
345 |
+
self._current_alibi_size = size
|
346 |
+
self.alibi = alibi
|
347 |
+
|
348 |
+
def forward(
|
349 |
+
self,
|
350 |
+
hidden_states: torch.Tensor,
|
351 |
+
attention_mask: torch.Tensor,
|
352 |
+
output_all_encoded_layers: Optional[bool] = True,
|
353 |
+
subset_mask: Optional[torch.Tensor] = None,
|
354 |
+
position_encodings: Optional[torch.Tensor] = None,
|
355 |
+
) -> List[torch.Tensor]:
|
356 |
+
|
357 |
+
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
358 |
+
extended_attention_mask = extended_attention_mask.to(
|
359 |
+
dtype=next(self.parameters()).dtype) # fp16 compatibility
|
360 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
361 |
+
attention_mask_bool = attention_mask.bool()
|
362 |
+
batch, seqlen = hidden_states.shape[:2]
|
363 |
+
|
364 |
+
cu_seqlens = None
|
365 |
+
indices = None
|
366 |
+
alibi_attn_mask = None
|
367 |
+
|
368 |
+
all_encoder_layers = []
|
369 |
+
for layer_module in self.layer:
|
370 |
+
hidden_states = layer_module(hidden_states,
|
371 |
+
cu_seqlens,
|
372 |
+
seqlen,
|
373 |
+
None,
|
374 |
+
indices,
|
375 |
+
attn_mask=attention_mask,
|
376 |
+
bias=alibi_attn_mask
|
377 |
+
)
|
378 |
+
if position_encodings is not None:
|
379 |
+
hidden_states = hidden_states + position_encodings
|
380 |
+
if output_all_encoded_layers:
|
381 |
+
all_encoder_layers.append(hidden_states)
|
382 |
+
if subset_mask is not None:
|
383 |
+
hidden_states = hidden_states[subset_mask]
|
384 |
+
|
385 |
+
if not output_all_encoded_layers:
|
386 |
+
all_encoder_layers.append(hidden_states)
|
387 |
+
return all_encoder_layers
|
388 |
+
|
389 |
+
|
390 |
+
class BertPooler(nn.Module):
|
391 |
+
|
392 |
+
def __init__(self, config):
|
393 |
+
super(BertPooler, self).__init__()
|
394 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
395 |
+
self.activation = nn.Tanh()
|
396 |
+
self.pool_all = config.pool_all
|
397 |
+
|
398 |
+
def forward(self,
|
399 |
+
hidden_states: torch.Tensor,
|
400 |
+
pool: Optional[bool] = True,
|
401 |
+
mask= None) -> torch.Tensor:
|
402 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
403 |
+
# to the first token.
|
404 |
+
if not self.pool_all:
|
405 |
+
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
|
406 |
+
pooled_output = self.dense(first_token_tensor)
|
407 |
+
pooled_output = self.activation(pooled_output)
|
408 |
+
else:
|
409 |
+
# mean pool everything that isn't masked out
|
410 |
+
denom = torch.sum(mask, dim=1, keepdim=True)
|
411 |
+
mean_tensor = torch.sum((hidden_states) * mask.unsqueeze(-1), dim = 1) / denom
|
412 |
+
pooled_output = self.dense(mean_tensor)
|
413 |
+
pooled_output = self.activation(pooled_output)
|
414 |
+
return pooled_output
|
415 |
+
|
416 |
+
|
417 |
+
class BertPredictionHeadTransform(nn.Module):
|
418 |
+
|
419 |
+
def __init__(self, config):
|
420 |
+
super().__init__()
|
421 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
422 |
+
if isinstance(config.hidden_act, str):
|
423 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
424 |
+
else:
|
425 |
+
self.transform_act_fn = config.hidden_act
|
426 |
+
self.LayerNorm = torch.nn.LayerNorm(config.hidden_size, eps=1e-12)
|
427 |
+
|
428 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
429 |
+
hidden_states = self.dense(hidden_states)
|
430 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
431 |
+
hidden_states = self.LayerNorm(hidden_states)
|
432 |
+
return hidden_states
|
433 |
+
|
434 |
+
|
435 |
+
class BertModel(BertPreTrainedModel):
|
436 |
+
"""Overall BERT model.
|
437 |
+
|
438 |
+
Args:
|
439 |
+
config: a BertConfig class instance with the configuration to build a new model
|
440 |
+
|
441 |
+
Inputs:
|
442 |
+
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
|
443 |
+
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
|
444 |
+
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
|
445 |
+
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
|
446 |
+
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
|
447 |
+
a `sentence B` token (see BERT paper for more details).
|
448 |
+
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
|
449 |
+
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
450 |
+
input sequence length in the current batch. It's the mask that we typically use for attention when
|
451 |
+
a batch has varying length sentences.
|
452 |
+
`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
|
453 |
+
|
454 |
+
Outputs: Tuple of (encoded_layers, pooled_output)
|
455 |
+
`encoded_layers`: controlled by `output_all_encoded_layers` argument:
|
456 |
+
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
|
457 |
+
of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
|
458 |
+
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
|
459 |
+
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
|
460 |
+
to the last attention block of shape [batch_size, sequence_length, hidden_size],
|
461 |
+
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
|
462 |
+
classifier pretrained on top of the hidden state associated to the first character of the
|
463 |
+
input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
|
464 |
+
|
465 |
+
Example usage:
|
466 |
+
```python
|
467 |
+
# Already been converted into WordPiece token ids
|
468 |
+
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
469 |
+
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
470 |
+
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
|
471 |
+
config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
|
472 |
+
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
|
473 |
+
model = BertModel(config=config)
|
474 |
+
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
|
475 |
+
```
|
476 |
+
"""
|
477 |
+
|
478 |
+
def __init__(self, config, add_pooling_layer=True):
|
479 |
+
super(BertModel, self).__init__(config)
|
480 |
+
self.embeddings = BertEmbeddings(config)
|
481 |
+
self.encoder = BertEncoder(config)
|
482 |
+
|
483 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
484 |
+
self.post_init()
|
485 |
+
|
486 |
+
|
487 |
+
def get_input_embeddings(self):
|
488 |
+
return self.embeddings.word_embeddings
|
489 |
+
|
490 |
+
def set_input_embeddings(self, value):
|
491 |
+
self.embeddings.word_embeddings = value
|
492 |
+
|
493 |
+
def forward(
|
494 |
+
self,
|
495 |
+
input_ids: torch.Tensor,
|
496 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
497 |
+
attention_mask: Optional[torch.Tensor] = None,
|
498 |
+
position_ids: Optional[torch.Tensor] = None,
|
499 |
+
output_all_encoded_layers: Optional[bool] = False,
|
500 |
+
masked_tokens_mask: Optional[torch.Tensor] = None,
|
501 |
+
**kwargs
|
502 |
+
) -> Tuple[Union[List[torch.Tensor], torch.Tensor], Optional[torch.Tensor]]:
|
503 |
+
if attention_mask is None:
|
504 |
+
attention_mask = torch.ones_like(input_ids)
|
505 |
+
if token_type_ids is None:
|
506 |
+
token_type_ids = torch.zeros_like(input_ids)
|
507 |
+
|
508 |
+
embedding_output = self.embeddings(
|
509 |
+
input_ids,
|
510 |
+
token_type_ids,
|
511 |
+
position_ids
|
512 |
+
)
|
513 |
+
position_encodings = None
|
514 |
+
|
515 |
+
subset_mask = []
|
516 |
+
first_col_mask = []
|
517 |
+
|
518 |
+
if masked_tokens_mask is None:
|
519 |
+
subset_mask = None
|
520 |
+
else:
|
521 |
+
first_col_mask = torch.zeros_like(masked_tokens_mask)
|
522 |
+
first_col_mask[:, 0] = True
|
523 |
+
subset_mask = masked_tokens_mask | first_col_mask
|
524 |
+
|
525 |
+
encoder_outputs = self.encoder(
|
526 |
+
embedding_output,
|
527 |
+
attention_mask,
|
528 |
+
output_all_encoded_layers=output_all_encoded_layers,
|
529 |
+
subset_mask=subset_mask,
|
530 |
+
position_encodings=position_encodings)
|
531 |
+
if masked_tokens_mask is None:
|
532 |
+
sequence_output = encoder_outputs[-1]
|
533 |
+
pooled_output = self.pooler(
|
534 |
+
sequence_output, mask = attention_mask) if self.pooler is not None else None
|
535 |
+
else:
|
536 |
+
# TD [2022-03-01]: the indexing here is very tricky.
|
537 |
+
attention_mask_bool = attention_mask.bool()
|
538 |
+
subset_idx = subset_mask[attention_mask_bool] # type: ignore
|
539 |
+
sequence_output = encoder_outputs[-1][
|
540 |
+
masked_tokens_mask[attention_mask_bool][subset_idx]]
|
541 |
+
if self.pooler is not None:
|
542 |
+
pool_input = encoder_outputs[-1][
|
543 |
+
first_col_mask[attention_mask_bool][subset_idx]]
|
544 |
+
pooled_output = self.pooler(pool_input, pool=False, mask = attention_mask)
|
545 |
+
else:
|
546 |
+
pooled_output = None
|
547 |
+
|
548 |
+
if not output_all_encoded_layers:
|
549 |
+
encoder_outputs = sequence_output
|
550 |
+
|
551 |
+
if self.pooler is not None:
|
552 |
+
return encoder_outputs, pooled_output
|
553 |
+
|
554 |
+
return encoder_outputs, None
|
555 |
+
|
556 |
+
|
557 |
+
###################
|
558 |
+
# Bert Heads
|
559 |
+
###################
|
560 |
+
class BertLMPredictionHead(nn.Module):
|
561 |
+
|
562 |
+
def __init__(self, config, bert_model_embedding_weights):
|
563 |
+
super().__init__()
|
564 |
+
self.transform = BertPredictionHeadTransform(config)
|
565 |
+
# The output weights are the same as the input embeddings, but there is
|
566 |
+
# an output-only bias for each token.
|
567 |
+
self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
|
568 |
+
bert_model_embedding_weights.size(0))
|
569 |
+
self.decoder.weight = bert_model_embedding_weights
|
570 |
+
|
571 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
572 |
+
hidden_states = self.transform(hidden_states)
|
573 |
+
hidden_states = self.decoder(hidden_states)
|
574 |
+
return hidden_states
|
575 |
+
|
576 |
+
|
577 |
+
class BertOnlyMLMHead(nn.Module):
|
578 |
+
|
579 |
+
def __init__(self, config, bert_model_embedding_weights):
|
580 |
+
super().__init__()
|
581 |
+
self.predictions = BertLMPredictionHead(config,
|
582 |
+
bert_model_embedding_weights)
|
583 |
+
|
584 |
+
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
585 |
+
prediction_scores = self.predictions(sequence_output)
|
586 |
+
return prediction_scores
|
587 |
+
|
588 |
+
|
589 |
+
class BertOnlyNSPHead(nn.Module):
|
590 |
+
|
591 |
+
def __init__(self, config):
|
592 |
+
super().__init__()
|
593 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
594 |
+
|
595 |
+
def forward(self, pooled_output: torch.Tensor) -> torch.Tensor:
|
596 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
597 |
+
return seq_relationship_score
|
598 |
+
|
599 |
+
|
600 |
+
#######################
|
601 |
+
# Construct Bert model
|
602 |
+
#######################
|
603 |
+
class BertForMaskedLM(BertPreTrainedModel):
|
604 |
+
|
605 |
+
def __init__(self, config):
|
606 |
+
super().__init__(config)
|
607 |
+
|
608 |
+
if config.is_decoder:
|
609 |
+
warnings.warn(
|
610 |
+
'If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for '
|
611 |
+
'bi-directional self-attention.')
|
612 |
+
|
613 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
614 |
+
self.cls = BertOnlyMLMHead(config,
|
615 |
+
self.bert.embeddings.word_embeddings.weight)
|
616 |
+
|
617 |
+
# Initialize weights and apply final processing
|
618 |
+
self.post_init()
|
619 |
+
|
620 |
+
@classmethod
|
621 |
+
def from_composer(cls,
|
622 |
+
pretrained_checkpoint,
|
623 |
+
state_dict=None,
|
624 |
+
cache_dir=None,
|
625 |
+
from_tf=False,
|
626 |
+
config=None,
|
627 |
+
*inputs,
|
628 |
+
**kwargs):
|
629 |
+
"""Load from pre-trained."""
|
630 |
+
model = cls(config, *inputs, **kwargs)
|
631 |
+
if from_tf:
|
632 |
+
raise ValueError(
|
633 |
+
'TensorFlow is not supported.')
|
634 |
+
|
635 |
+
state_dict = torch.load(pretrained_checkpoint)
|
636 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
637 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix='model.')
|
638 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict,
|
639 |
+
strict=False)
|
640 |
+
|
641 |
+
if len(missing_keys) > 0:
|
642 |
+
logger.warning(
|
643 |
+
f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}"
|
644 |
+
)
|
645 |
+
if len(unexpected_keys) > 0:
|
646 |
+
logger.warning(
|
647 |
+
f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}"
|
648 |
+
)
|
649 |
+
|
650 |
+
return model
|
651 |
+
|
652 |
+
def get_output_embeddings(self):
|
653 |
+
return self.cls.predictions.decoder
|
654 |
+
|
655 |
+
def set_output_embeddings(self, new_embeddings):
|
656 |
+
self.cls.predictions.decoder = new_embeddings
|
657 |
+
|
658 |
+
def forward(
|
659 |
+
self,
|
660 |
+
input_ids: Optional[torch.Tensor] = None,
|
661 |
+
attention_mask: Optional[torch.Tensor] = None,
|
662 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
663 |
+
position_ids: Optional[torch.Tensor] = None,
|
664 |
+
head_mask: Optional[torch.Tensor] = None,
|
665 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
666 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
667 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
668 |
+
labels: Optional[torch.Tensor] = None,
|
669 |
+
output_attentions: Optional[bool] = None,
|
670 |
+
output_hidden_states: Optional[bool] = None,
|
671 |
+
return_dict: Optional[bool] = None,
|
672 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
673 |
+
# labels should be a `torch.LongTensor` of shape
|
674 |
+
# `(batch_size, sequence_length)`. These are used for computing the
|
675 |
+
# masked language modeling loss.
|
676 |
+
#
|
677 |
+
# Indices should be in `[-100, 0, ..., config.vocab_size]` (see
|
678 |
+
# `input_ids` docstring) Tokens with indices set to `-100` are ignored
|
679 |
+
# (masked), the loss is only computed for the tokens with labels in `[0,
|
680 |
+
# ..., config.vocab_size]`
|
681 |
+
#
|
682 |
+
# Prediction scores are only computed for masked tokens and the (bs,
|
683 |
+
# seqlen) dimensions are flattened
|
684 |
+
if (input_ids is not None) == (inputs_embeds is not None):
|
685 |
+
raise ValueError('Must specify either input_ids or input_embeds!')
|
686 |
+
|
687 |
+
if labels is None:
|
688 |
+
masked_tokens_mask = None
|
689 |
+
else:
|
690 |
+
masked_tokens_mask = labels > 0
|
691 |
+
|
692 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
693 |
+
|
694 |
+
outputs = self.bert(
|
695 |
+
input_ids,
|
696 |
+
attention_mask=attention_mask,
|
697 |
+
token_type_ids=token_type_ids,
|
698 |
+
position_ids=position_ids,
|
699 |
+
head_mask=head_mask,
|
700 |
+
inputs_embeds=inputs_embeds,
|
701 |
+
encoder_hidden_states=encoder_hidden_states,
|
702 |
+
encoder_attention_mask=encoder_attention_mask,
|
703 |
+
output_attentions=output_attentions,
|
704 |
+
output_hidden_states=output_hidden_states,
|
705 |
+
return_dict=return_dict,
|
706 |
+
masked_tokens_mask=masked_tokens_mask,
|
707 |
+
)
|
708 |
+
|
709 |
+
if torch.isnan(outputs[0]).any():
|
710 |
+
print("NaNs in outputs.")
|
711 |
+
raise ValueError()
|
712 |
+
|
713 |
+
#print("MLM Outputs")
|
714 |
+
#print(outputs[0].shape)
|
715 |
+
|
716 |
+
pooled_output = outputs[0]
|
717 |
+
|
718 |
+
last_hidden_state_formatted = outputs[0][:,0,:].view(-1, self.config.hidden_size)
|
719 |
+
return {"sentence_embedding": last_hidden_state_formatted}
|
720 |
+
|
721 |
+
def prepare_inputs_for_generation(self, input_ids: torch.Tensor,
|
722 |
+
attention_mask: torch.Tensor,
|
723 |
+
**model_kwargs):
|
724 |
+
input_shape = input_ids.shape
|
725 |
+
effective_batch_size = input_shape[0]
|
726 |
+
|
727 |
+
# add a dummy token
|
728 |
+
if self.config.pad_token_id is None:
|
729 |
+
raise ValueError('The PAD token should be defined for generation')
|
730 |
+
|
731 |
+
attention_mask = torch.cat([
|
732 |
+
attention_mask,
|
733 |
+
attention_mask.new_zeros((attention_mask.shape[0], 1))
|
734 |
+
], dim=-1)
|
735 |
+
dummy_token = torch.full((effective_batch_size, 1),
|
736 |
+
self.config.pad_token_id,
|
737 |
+
dtype=torch.long,
|
738 |
+
device=input_ids.device)
|
739 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
740 |
+
|
741 |
+
return {'input_ids': input_ids, 'attention_mask': attention_mask}
|
742 |
+
|
743 |
+
|
744 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
745 |
+
"""Bert Model transformer with a sequence classification/regression head.
|
746 |
+
|
747 |
+
This head is just a linear layer on top of the pooled output. Used for,
|
748 |
+
e.g., GLUE tasks.
|
749 |
+
"""
|
750 |
+
|
751 |
+
def __init__(self, config):
|
752 |
+
super().__init__(config)
|
753 |
+
self.num_labels = config.num_labels
|
754 |
+
self.config = config
|
755 |
+
|
756 |
+
self.bert = BertModel(config)
|
757 |
+
classifier_dropout = (config.classifier_dropout
|
758 |
+
if config.classifier_dropout is not None else
|
759 |
+
config.hidden_dropout_prob)
|
760 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
761 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
762 |
+
|
763 |
+
# Initialize weights and apply final processing
|
764 |
+
self.post_init()
|
765 |
+
|
766 |
+
@classmethod
|
767 |
+
def from_composer(cls,
|
768 |
+
pretrained_checkpoint,
|
769 |
+
state_dict=None,
|
770 |
+
cache_dir=None,
|
771 |
+
from_tf=False,
|
772 |
+
config=None,
|
773 |
+
*inputs,
|
774 |
+
**kwargs):
|
775 |
+
"""Load from pre-trained."""
|
776 |
+
model = cls(config, *inputs, **kwargs)
|
777 |
+
if from_tf:
|
778 |
+
raise ValueError(
|
779 |
+
'TensorFlow is not supported.')
|
780 |
+
|
781 |
+
state_dict = torch.load(pretrained_checkpoint)
|
782 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
783 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix='model.')
|
784 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict,
|
785 |
+
strict=False)
|
786 |
+
|
787 |
+
if len(missing_keys) > 0:
|
788 |
+
logger.warning(
|
789 |
+
f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}"
|
790 |
+
)
|
791 |
+
if len(unexpected_keys) > 0:
|
792 |
+
logger.warning(
|
793 |
+
f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}"
|
794 |
+
)
|
795 |
+
|
796 |
+
return model
|
797 |
+
|
798 |
+
def forward(
|
799 |
+
self,
|
800 |
+
input_ids: Optional[torch.Tensor] = None,
|
801 |
+
attention_mask: Optional[torch.Tensor] = None,
|
802 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
803 |
+
position_ids: Optional[torch.Tensor] = None,
|
804 |
+
head_mask: Optional[torch.Tensor] = None,
|
805 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
806 |
+
labels: Optional[torch.Tensor] = None,
|
807 |
+
output_attentions: Optional[bool] = None,
|
808 |
+
output_hidden_states: Optional[bool] = None,
|
809 |
+
return_dict: Optional[bool] = None,
|
810 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
811 |
+
# labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
812 |
+
# Labels for computing the sequence classification/regression loss.
|
813 |
+
# Indices should be in `[0, ..., config.num_labels - 1]`.
|
814 |
+
# If `config.num_labels == 1` a regression loss is computed
|
815 |
+
# (mean-square loss). If `config.num_labels > 1` a classification loss
|
816 |
+
# is computed (cross-entropy).
|
817 |
+
|
818 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
819 |
+
|
820 |
+
outputs = self.bert(
|
821 |
+
input_ids,
|
822 |
+
attention_mask=attention_mask,
|
823 |
+
token_type_ids=token_type_ids,
|
824 |
+
position_ids=position_ids,
|
825 |
+
head_mask=head_mask,
|
826 |
+
inputs_embeds=inputs_embeds,
|
827 |
+
output_attentions=output_attentions,
|
828 |
+
output_hidden_states=output_hidden_states,
|
829 |
+
return_dict=return_dict,
|
830 |
+
)
|
831 |
+
|
832 |
+
pooled_output = outputs[1]
|
833 |
+
|
834 |
+
pooled_output = self.dropout(pooled_output)
|
835 |
+
logits = self.classifier(pooled_output)
|
836 |
+
|
837 |
+
loss = None
|
838 |
+
if labels is not None:
|
839 |
+
# Compute loss
|
840 |
+
if self.config.problem_type is None:
|
841 |
+
if self.num_labels == 1:
|
842 |
+
self.config.problem_type = 'regression'
|
843 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or
|
844 |
+
labels.dtype == torch.int):
|
845 |
+
self.config.problem_type = 'single_label_classification'
|
846 |
+
else:
|
847 |
+
self.config.problem_type = 'multi_label_classification'
|
848 |
+
|
849 |
+
if self.config.problem_type == 'regression':
|
850 |
+
loss_fct = nn.MSELoss()
|
851 |
+
if self.num_labels == 1:
|
852 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
853 |
+
else:
|
854 |
+
loss = loss_fct(logits, labels)
|
855 |
+
elif self.config.problem_type == 'single_label_classification':
|
856 |
+
loss_fct = nn.CrossEntropyLoss()
|
857 |
+
loss = loss_fct(logits.view(-1, self.num_labels),
|
858 |
+
labels.view(-1))
|
859 |
+
elif self.config.problem_type == 'multi_label_classification':
|
860 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
861 |
+
loss = loss_fct(logits, labels)
|
862 |
+
|
863 |
+
if not return_dict:
|
864 |
+
output = (logits,) + outputs[2:]
|
865 |
+
return ((loss,) + output) if loss is not None else output
|
866 |
+
|
867 |
+
return SequenceClassifierOutput(
|
868 |
+
loss=loss,
|
869 |
+
logits=logits,
|
870 |
+
hidden_states=None,
|
871 |
+
attentions=None,
|
872 |
+
)
|
873 |
+
|
874 |
+
class BertForTextEncoding(BertPreTrainedModel):
|
875 |
+
|
876 |
+
def __init__(self, config):
|
877 |
+
super().__init__(config)
|
878 |
+
|
879 |
+
if config.is_decoder:
|
880 |
+
warnings.warn(
|
881 |
+
'If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for '
|
882 |
+
'bi-directional self-attention.')
|
883 |
+
|
884 |
+
self.bert = BertModel(config, add_pooling_layer=True)
|
885 |
+
|
886 |
+
# Initialize weights and apply final processing
|
887 |
+
self.post_init()
|
888 |
+
|
889 |
+
@classmethod
|
890 |
+
def from_composer(cls,
|
891 |
+
pretrained_checkpoint,
|
892 |
+
state_dict=None,
|
893 |
+
cache_dir=None,
|
894 |
+
from_tf=False,
|
895 |
+
config=None,
|
896 |
+
*inputs,
|
897 |
+
**kwargs):
|
898 |
+
"""Load from pre-trained."""
|
899 |
+
model = cls(config, *inputs, **kwargs)
|
900 |
+
if from_tf:
|
901 |
+
raise ValueError(
|
902 |
+
'TensorFlow is not supported.')
|
903 |
+
|
904 |
+
state_dict = torch.load(pretrained_checkpoint)
|
905 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
906 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix='model.')
|
907 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict,
|
908 |
+
strict=False)
|
909 |
+
|
910 |
+
if len(missing_keys) > 0:
|
911 |
+
logger.warning(
|
912 |
+
f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}"
|
913 |
+
)
|
914 |
+
if len(unexpected_keys) > 0:
|
915 |
+
logger.warning(
|
916 |
+
f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}"
|
917 |
+
)
|
918 |
+
|
919 |
+
return model
|
920 |
+
|
921 |
+
def forward(
|
922 |
+
self,
|
923 |
+
input_ids: Optional[torch.Tensor] = None,
|
924 |
+
attention_mask: Optional[torch.Tensor] = None,
|
925 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
926 |
+
position_ids: Optional[torch.Tensor] = None,
|
927 |
+
head_mask: Optional[torch.Tensor] = None,
|
928 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
929 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
930 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
931 |
+
labels: Optional[torch.Tensor] = None,
|
932 |
+
output_attentions: Optional[bool] = None,
|
933 |
+
output_hidden_states: Optional[bool] = None,
|
934 |
+
return_dict: Optional[bool] = None,
|
935 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
936 |
+
|
937 |
+
if (input_ids is not None) == (inputs_embeds is not None):
|
938 |
+
raise ValueError('Must specify either input_ids or input_embeds!')
|
939 |
+
|
940 |
+
if labels is None:
|
941 |
+
masked_tokens_mask = None
|
942 |
+
else:
|
943 |
+
masked_tokens_mask = labels > 0
|
944 |
+
|
945 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
946 |
+
|
947 |
+
outputs = self.bert(
|
948 |
+
input_ids,
|
949 |
+
attention_mask=attention_mask,
|
950 |
+
token_type_ids=token_type_ids,
|
951 |
+
position_ids=position_ids,
|
952 |
+
head_mask=head_mask,
|
953 |
+
inputs_embeds=inputs_embeds,
|
954 |
+
encoder_hidden_states=encoder_hidden_states,
|
955 |
+
encoder_attention_mask=encoder_attention_mask,
|
956 |
+
output_attentions=output_attentions,
|
957 |
+
output_hidden_states=output_hidden_states,
|
958 |
+
return_dict=return_dict,
|
959 |
+
masked_tokens_mask=masked_tokens_mask,
|
960 |
+
)
|
961 |
+
|
962 |
+
pooled_output = outputs[1]
|
963 |
+
|
964 |
+
return {"sentence_embedding": pooled_output}
|
965 |
+
|
966 |
+
def prepare_inputs_for_generation(self, input_ids: torch.Tensor,
|
967 |
+
attention_mask: torch.Tensor,
|
968 |
+
**model_kwargs):
|
969 |
+
input_shape = input_ids.shape
|
970 |
+
effective_batch_size = input_shape[0]
|
971 |
+
|
972 |
+
# add a dummy token
|
973 |
+
if self.config.pad_token_id is None:
|
974 |
+
raise ValueError('The PAD token should be defined for generation')
|
975 |
+
|
976 |
+
attention_mask = torch.cat([
|
977 |
+
attention_mask,
|
978 |
+
attention_mask.new_zeros((attention_mask.shape[0], 1))
|
979 |
+
], dim=-1)
|
980 |
+
dummy_token = torch.full((effective_batch_size, 1),
|
981 |
+
self.config.pad_token_id,
|
982 |
+
dtype=torch.long,
|
983 |
+
device=input_ids.device)
|
984 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
985 |
+
|
986 |
+
return {'input_ids': input_ids, 'attention_mask': attention_mask}
|
bert_padding.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/bert_padding.py
|
2 |
+
# Adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
|
3 |
+
|
4 |
+
"""
|
5 |
+
|
6 |
+
Functions for padding and unpadding
|
7 |
+
|
8 |
+
"""
|
9 |
+
|
10 |
+
from typing import Tuple, cast
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn.functional as F
|
14 |
+
from einops import rearrange, repeat
|
15 |
+
|
16 |
+
|
17 |
+
class IndexFirstAxis(torch.autograd.Function):
|
18 |
+
|
19 |
+
@staticmethod
|
20 |
+
def forward(ctx, input: torch.Tensor,
|
21 |
+
indices: torch.Tensor) -> torch.Tensor:
|
22 |
+
"""Get just the values of `input` which are at `indices`.
|
23 |
+
|
24 |
+
Arguments:
|
25 |
+
ctx: the autograd context object
|
26 |
+
input: (b, ...) 2+ dimensional tensor
|
27 |
+
indices: (num_idx) 1D tensor
|
28 |
+
"""
|
29 |
+
ctx.save_for_backward(indices)
|
30 |
+
assert input.ndim >= 2
|
31 |
+
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[
|
32 |
+
1:]
|
33 |
+
second_dim = other_shape.numel(
|
34 |
+
) # product of sizes of all but first dimension
|
35 |
+
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
|
36 |
+
return torch.gather(
|
37 |
+
rearrange(input, 'b ... -> b (...)'), # (b, ...) -> (b, second_dim)
|
38 |
+
0,
|
39 |
+
repeat(indices, 'z -> z d',
|
40 |
+
d=second_dim) # (indices,) -> (indices, second_dim)
|
41 |
+
).reshape(-1, *other_shape) # (num_idx, ...)
|
42 |
+
|
43 |
+
@staticmethod
|
44 |
+
def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None]:
|
45 |
+
indices, = ctx.saved_tensors
|
46 |
+
assert grad_output.ndim >= 2
|
47 |
+
other_shape = grad_output.shape[1:]
|
48 |
+
grad_output = rearrange(grad_output, 'b ... -> b (...)')
|
49 |
+
grad_input = torch.zeros([ctx.first_axis_dim, grad_output.shape[1]],
|
50 |
+
device=grad_output.device,
|
51 |
+
dtype=grad_output.dtype)
|
52 |
+
# TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
|
53 |
+
# grad_input[indices] = grad_output
|
54 |
+
grad_input.scatter_(0,
|
55 |
+
repeat(indices, 'z -> z d', d=grad_output.shape[1]),
|
56 |
+
grad_output)
|
57 |
+
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
|
58 |
+
|
59 |
+
|
60 |
+
index_first_axis = IndexFirstAxis.apply
|
61 |
+
|
62 |
+
|
63 |
+
class IndexPutFirstAxis(torch.autograd.Function):
|
64 |
+
|
65 |
+
@staticmethod
|
66 |
+
def forward(ctx, values: torch.Tensor, indices: torch.Tensor,
|
67 |
+
first_axis_dim) -> torch.Tensor:
|
68 |
+
ctx.save_for_backward(indices)
|
69 |
+
assert indices.ndim == 1
|
70 |
+
assert values.ndim >= 2
|
71 |
+
output = torch.zeros(first_axis_dim,
|
72 |
+
*values.shape[1:],
|
73 |
+
device=values.device,
|
74 |
+
dtype=values.dtype)
|
75 |
+
output[indices] = values
|
76 |
+
return output
|
77 |
+
|
78 |
+
@staticmethod
|
79 |
+
def backward(ctx,
|
80 |
+
grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]:
|
81 |
+
indices, = ctx.saved_tensors
|
82 |
+
grad_values = grad_output[indices]
|
83 |
+
return grad_values, None, None
|
84 |
+
|
85 |
+
|
86 |
+
index_put_first_axis = IndexPutFirstAxis.apply
|
87 |
+
|
88 |
+
|
89 |
+
def unpad_input(
|
90 |
+
hidden_states: torch.Tensor,
|
91 |
+
attention_mask: torch.Tensor,
|
92 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
|
93 |
+
"""Remove padding from input sequences.
|
94 |
+
|
95 |
+
Arguments:
|
96 |
+
hidden_states: (batch, seqlen, ...)
|
97 |
+
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
101 |
+
cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
|
102 |
+
max_seqlen_in_batch: int
|
103 |
+
"""
|
104 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
105 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
106 |
+
max_seqlen_in_batch = int(seqlens_in_batch.max().item())
|
107 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32),
|
108 |
+
(1, 0))
|
109 |
+
# TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
|
110 |
+
# bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
|
111 |
+
# times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
|
112 |
+
# index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
|
113 |
+
# so we write custom forward and backward to make it a bit faster.
|
114 |
+
hidden_states = cast(
|
115 |
+
torch.Tensor,
|
116 |
+
index_first_axis(rearrange(hidden_states, 'b s ... -> (b s) ...'),
|
117 |
+
indices))
|
118 |
+
return hidden_states, indices, cu_seqlens, max_seqlen_in_batch
|
119 |
+
|
120 |
+
|
121 |
+
def unpad_input_only(
|
122 |
+
hidden_states: torch.Tensor,
|
123 |
+
attention_mask: torch.Tensor,
|
124 |
+
) -> torch.Tensor:
|
125 |
+
"""Like unpad_input, but only return the unpadded first tensor.
|
126 |
+
|
127 |
+
Save a small amount of overhead.
|
128 |
+
|
129 |
+
Arguments:
|
130 |
+
hidden_states: (batch, seqlen, ...)
|
131 |
+
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
132 |
+
|
133 |
+
Returns:
|
134 |
+
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
135 |
+
"""
|
136 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
137 |
+
rearranged = rearrange(hidden_states, 'b s ... -> (b s) ...')
|
138 |
+
return index_first_axis(rearranged, indices) # type: ignore
|
139 |
+
|
140 |
+
|
141 |
+
def pad_input(hidden_states: torch.Tensor, indices: torch.Tensor, batch: int,
|
142 |
+
seqlen: int) -> torch.Tensor:
|
143 |
+
"""Add padding to sequences.
|
144 |
+
|
145 |
+
Arguments:
|
146 |
+
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
147 |
+
indices: (total_nnz)
|
148 |
+
|
149 |
+
Returns:
|
150 |
+
hidden_states: (batch, seqlen, ...)
|
151 |
+
"""
|
152 |
+
output = index_put_first_axis(hidden_states, indices, batch * seqlen)
|
153 |
+
return rearrange(output, '(b s) ... -> b s ...', b=batch) # type: ignore
|
blockdiag_linear.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/HazyResearch/fly/tree/master/src/models/layers
|
2 |
+
|
3 |
+
import math
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from einops import rearrange
|
7 |
+
|
8 |
+
from .structured_linear import StructuredLinear
|
9 |
+
from .blockdiag_multiply import blockdiag_multiply
|
10 |
+
|
11 |
+
|
12 |
+
class BlockdiagLinear(StructuredLinear):
|
13 |
+
|
14 |
+
def __init__(self, *args, nblocks=4, shuffle=False, **kwargs):
|
15 |
+
"""shuffle: apply channel_shuffle operation before the matmul as in ShuffleNet
|
16 |
+
"""
|
17 |
+
super().__init__(*args, **kwargs)
|
18 |
+
in_blksz = int(math.ceil(self.in_features / nblocks))
|
19 |
+
out_blksz = int(math.ceil(self.out_features / nblocks))
|
20 |
+
self.in_features_extended = in_blksz * nblocks
|
21 |
+
self.out_features_extended = out_blksz * nblocks
|
22 |
+
self.shuffle = shuffle
|
23 |
+
self.weight = nn.Parameter(torch.empty(nblocks, out_blksz, in_blksz))
|
24 |
+
self.reset_parameters()
|
25 |
+
|
26 |
+
def set_weights_from_dense_init(self, dense_init_fn_):
|
27 |
+
dense_weight = torch.empty(self.out_features_extended, self.in_features_extended,
|
28 |
+
device=self.weight.device, dtype=self.weight.dtype)
|
29 |
+
dense_init_fn_(dense_weight)
|
30 |
+
# Scale by sqrt because the weight is sparse
|
31 |
+
scaling = math.sqrt(dense_weight.numel() / self.weight.numel())
|
32 |
+
dense_weight *= scaling
|
33 |
+
with torch.no_grad():
|
34 |
+
nblocks = self.weight.shape[0]
|
35 |
+
self.weight.copy_(rearrange(dense_weight, '(b o) (b1 i) -> b b1 o i',
|
36 |
+
b=nblocks, b1=nblocks)[0])
|
37 |
+
|
38 |
+
@property
|
39 |
+
def saving(self):
|
40 |
+
return self.weight.numel() / (self.in_features * self.out_features)
|
41 |
+
|
42 |
+
def forward_matmul(self, x):
|
43 |
+
x = self.preprocess(x)
|
44 |
+
if self.shuffle:
|
45 |
+
x = rearrange(x, '... (group c_per_group) -> ... (c_per_group group)',
|
46 |
+
group=self.weight.shape[0]) # group=nblocks
|
47 |
+
output = blockdiag_multiply(x, self.weight)
|
48 |
+
return self.postprocess(output)
|
49 |
+
|
50 |
+
|
51 |
+
class BlockdiagSparsityConfig:
|
52 |
+
|
53 |
+
def __init__(self, nblocks, block=32, global_size=0):
|
54 |
+
"""shuffle: apply channel_shuffle operation before the matmul as in ShuffleNet
|
55 |
+
"""
|
56 |
+
self.nblocks = nblocks
|
57 |
+
self.block = block
|
58 |
+
self.global_size = global_size
|
59 |
+
|
60 |
+
def make_layout(self, out_features, in_features):
|
61 |
+
assert out_features % self.block == 0 and in_features % self.block == 0
|
62 |
+
assert out_features % self.nblocks == 0 and in_features % self.nblocks == 0
|
63 |
+
layout = torch.block_diag(*[torch.ones(out_features // self.nblocks,
|
64 |
+
in_features // self.nblocks,
|
65 |
+
dtype=torch.int32)] * self.nblocks)
|
66 |
+
if self.global_size > 0:
|
67 |
+
layout[:self.global_size] = 1
|
68 |
+
layout[:, :self.global_size] = 1
|
69 |
+
# Convert from (out_features, in_features) mask to
|
70 |
+
# (out_features // block, in_features // block) mask
|
71 |
+
layout = rearrange(layout, '(p blksz) (r blksz1) -> p r (blksz blksz1)',
|
72 |
+
blksz=self.block, blksz1=self.block)
|
73 |
+
return (layout > 0).any(dim=-1).int()
|
blockdiag_multiply.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/HazyResearch/fly/tree/master/src/models/layers
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from einops import rearrange
|
7 |
+
|
8 |
+
|
9 |
+
def blockdiag_weight_to_dense_weight(weight):
|
10 |
+
"""
|
11 |
+
Argumments:
|
12 |
+
weight: (nblocks, out / nblocks, in / blocks)
|
13 |
+
Return:
|
14 |
+
dense_weight: (out / in)
|
15 |
+
"""
|
16 |
+
return torch.block_diag(*torch.unbind(weight, dim=0))
|
17 |
+
|
18 |
+
|
19 |
+
def blockdiag_multiply_reference(x, weight):
|
20 |
+
"""
|
21 |
+
This implementation is slow but more likely to be correct.
|
22 |
+
Arguments:
|
23 |
+
x: (..., n)
|
24 |
+
weight: (nblocks, q, n / nblocks)
|
25 |
+
Outputs:
|
26 |
+
out: (..., nblocks * q)
|
27 |
+
"""
|
28 |
+
n = x.shape[-1]
|
29 |
+
nblocks, q, p = weight.shape
|
30 |
+
assert nblocks * p == n
|
31 |
+
|
32 |
+
x_reshaped = rearrange(x, '... (nblocks p) -> ... nblocks p', nblocks=nblocks)
|
33 |
+
return rearrange(torch.einsum('...kp, kqp -> ...kq', x_reshaped, weight),
|
34 |
+
'... nblocks q -> ... (nblocks q)')
|
35 |
+
|
36 |
+
|
37 |
+
class BlockdiagMultiply(torch.autograd.Function):
|
38 |
+
|
39 |
+
"""This is a faster implementation, with careful memory copies for the fastest
|
40 |
+
bmm performance.
|
41 |
+
The backward pass is also written manually with careful memory copies.
|
42 |
+
Arguments:
|
43 |
+
x: (..., n)
|
44 |
+
weight: (nblocks, q, n / nblocks)
|
45 |
+
Outputs:
|
46 |
+
out: (..., nblocks * q)
|
47 |
+
"""
|
48 |
+
|
49 |
+
@staticmethod
|
50 |
+
@torch.cuda.amp.custom_fwd(cast_inputs=torch.bfloat16)
|
51 |
+
def forward(ctx, x, weight):
|
52 |
+
ctx.save_for_backward(x, weight)
|
53 |
+
batch_shape, n = x.shape[:-1], x.shape[-1]
|
54 |
+
batch_dim = np.prod(batch_shape)
|
55 |
+
nblocks, q, p = weight.shape
|
56 |
+
assert nblocks * p == n
|
57 |
+
x_reshaped = x.reshape(batch_dim, nblocks, p).transpose(0, 1)
|
58 |
+
out = torch.empty(batch_dim, nblocks, q, device=x.device, dtype=x.dtype).transpose(0, 1)
|
59 |
+
out = torch.bmm(x_reshaped, weight.transpose(-1, -2), out=out).transpose(0, 1)
|
60 |
+
return out.reshape(*batch_shape, nblocks * q)
|
61 |
+
|
62 |
+
@staticmethod
|
63 |
+
@torch.cuda.amp.custom_bwd
|
64 |
+
def backward(ctx, dout):
|
65 |
+
x, weight = ctx.saved_tensors
|
66 |
+
batch_shape, n = x.shape[:-1], x.shape[-1]
|
67 |
+
batch_dim = np.prod(batch_shape)
|
68 |
+
nblocks, q, p = weight.shape
|
69 |
+
assert nblocks * p == n
|
70 |
+
dx, dweight = None, None
|
71 |
+
dout_reshaped = dout.reshape(batch_dim, nblocks, q).transpose(0, 1)
|
72 |
+
if ctx.needs_input_grad[0]:
|
73 |
+
dx = torch.empty(batch_dim, nblocks, p, device=x.device, dtype=x.dtype)
|
74 |
+
dx = torch.bmm(dout_reshaped, weight.conj(),
|
75 |
+
out=dx.transpose(0, 1)).transpose(0, 1).reshape(*batch_shape, n)
|
76 |
+
if ctx.needs_input_grad[1]:
|
77 |
+
x_reshaped = x.reshape(batch_dim, nblocks, p).transpose(0, 1)
|
78 |
+
dweight = torch.bmm(dout_reshaped.transpose(-1, -2), x_reshaped.conj())
|
79 |
+
return dx, dweight
|
80 |
+
|
81 |
+
|
82 |
+
blockdiag_multiply = BlockdiagMultiply.apply
|
config.json
CHANGED
@@ -1,4 +1,48 @@
|
|
1 |
{
|
2 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
}
|
4 |
-
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "togethercomputer/m2-bert-80M-32k",
|
3 |
+
"alibi_starting_size": 32768,
|
4 |
+
"architectures": [
|
5 |
+
"BertForMaskedLM"
|
6 |
+
],
|
7 |
+
"attention_probs_dropout_prob": 0.0,
|
8 |
+
"bidirectional": true,
|
9 |
+
"auto_map": {
|
10 |
+
"AutoConfig": "configuration_bert.BertConfig",
|
11 |
+
"AutoModelForSequenceClassification": "bert_layers.BertForMaskedLM",
|
12 |
+
"AutoTokenizer": "bert-base-uncased"
|
13 |
+
},
|
14 |
+
"classifier_dropout": null,
|
15 |
+
"gradient_checkpointing": false,
|
16 |
+
"hidden_act": "gelu",
|
17 |
+
"hidden_dropout_prob": 0.1,
|
18 |
+
"hidden_size": 768,
|
19 |
+
"hyena_emb_dim": 5,
|
20 |
+
"hyena_filter_dropout": 0.2,
|
21 |
+
"hyena_filter_order": 128,
|
22 |
+
"hyena_lr_pos_emb": 1e-05,
|
23 |
+
"hyena_training_additions": false,
|
24 |
+
"hyena_w": 10,
|
25 |
+
"hyena_w_mod": 1,
|
26 |
+
"hyena_wd": 0.1,
|
27 |
+
"initializer_range": 0.02,
|
28 |
+
"intermediate_size": 3072,
|
29 |
+
"layer_norm_eps": 1e-12,
|
30 |
+
"long_conv_kernel_learning_rate": 0.001,
|
31 |
+
"long_conv_l_max": 32768,
|
32 |
+
"max_position_embeddings": 32768,
|
33 |
+
"model_type": "bert",
|
34 |
+
"monarch_mlp_nblocks": 4,
|
35 |
+
"num_attention_heads": 12,
|
36 |
+
"num_hidden_layers": 12,
|
37 |
+
"pad_token_id": 0,
|
38 |
+
"pool_all": false,
|
39 |
+
"position_embedding_type": "absolute",
|
40 |
+
"residual_long_conv": true,
|
41 |
+
"transformers_version": "4.28.1",
|
42 |
+
"type_vocab_size": 2,
|
43 |
+
"use_cache": true,
|
44 |
+
"use_glu_mlp": true,
|
45 |
+
"use_monarch_mlp": true,
|
46 |
+
"use_positional_encodings": true,
|
47 |
+
"vocab_size": 30528
|
48 |
}
|
|
configuration_bert.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BertConfig
|
2 |
+
|
3 |
+
|
4 |
+
class BertConfig(BertConfig):
|
5 |
+
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
alibi_starting_size: int = 512,
|
9 |
+
attention_probs_dropout_prob: float = 0.0,
|
10 |
+
|
11 |
+
# mlp
|
12 |
+
use_glu_mlp: bool = True,
|
13 |
+
use_monarch_mlp: bool = False,
|
14 |
+
monarch_mlp_nblocks: int = 4,
|
15 |
+
|
16 |
+
# position
|
17 |
+
use_positional_encodings: bool = False,
|
18 |
+
max_position_embeddings: int = 512,
|
19 |
+
|
20 |
+
# architecture selection
|
21 |
+
residual_long_conv: bool = False,
|
22 |
+
|
23 |
+
# hyena and long conv hyperparameters
|
24 |
+
bidirectional: bool = True,
|
25 |
+
hyena_w_mod: int = 1,
|
26 |
+
hyena_filter_dropout: float = 0.2,
|
27 |
+
hyena_filter_order: int = 64,
|
28 |
+
hyena_training_additions: bool = False,
|
29 |
+
|
30 |
+
# efficiency
|
31 |
+
use_flash_mm: bool = False,
|
32 |
+
|
33 |
+
# average pooling instead of CLS token
|
34 |
+
pool_all: bool = False,
|
35 |
+
|
36 |
+
**kwargs,
|
37 |
+
):
|
38 |
+
"""Configuration class for MosaicBert.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
alibi_starting_size (int): Use `alibi_starting_size` to determine how large of an alibi tensor to
|
42 |
+
create when initializing the model. You should be able to ignore this parameter in most cases.
|
43 |
+
Defaults to 512.
|
44 |
+
attention_probs_dropout_prob (float): By default, turn off attention dropout in Mosaic BERT.
|
45 |
+
Defaults to 0.0.
|
46 |
+
"""
|
47 |
+
super().__init__(
|
48 |
+
attention_probs_dropout_prob=attention_probs_dropout_prob, **kwargs)
|
49 |
+
self.alibi_starting_size = alibi_starting_size
|
50 |
+
|
51 |
+
# mlp
|
52 |
+
self.use_glu_mlp = use_glu_mlp
|
53 |
+
self.use_monarch_mlp = use_monarch_mlp
|
54 |
+
self.monarch_mlp_nblocks = monarch_mlp_nblocks
|
55 |
+
|
56 |
+
# positional encodings
|
57 |
+
self.use_positional_encodings = use_positional_encodings
|
58 |
+
self.max_position_embeddings = max_position_embeddings
|
59 |
+
|
60 |
+
# architecture
|
61 |
+
self.residual_long_conv = residual_long_conv
|
62 |
+
|
63 |
+
# hyena and long conv hyperparameters
|
64 |
+
self.bidirectional = bidirectional
|
65 |
+
self.hyena_w_mod = hyena_w_mod
|
66 |
+
self.hyena_filter_dropout = hyena_filter_dropout
|
67 |
+
self.hyena_filter_order = hyena_filter_order
|
68 |
+
self.hyena_training_additions = hyena_training_additions
|
69 |
+
|
70 |
+
# efficiency
|
71 |
+
self.use_flash_mm = use_flash_mm
|
72 |
+
|
73 |
+
# average pooling instead of CLS token
|
74 |
+
self.pool_all = pool_all
|
75 |
+
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.28.1",
|
4 |
+
"use_cache": false,
|
5 |
+
"eos_token_id": [0, 50278]
|
6 |
+
}
|
hyena_utils.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, Dan Fu and Simran Arora.
|
2 |
+
# Adapted from https://github.com/HazyResearch/safari/blob/main/src/models/sequence/hyena.py
|
3 |
+
|
4 |
+
import math
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
from einops import rearrange
|
11 |
+
import opt_einsum as oe
|
12 |
+
contract = oe.contract
|
13 |
+
|
14 |
+
""" Utils for the training loop. Copied from https://github.com/HazyResearch/transformers/blob/master/src/utils/utils.py """
|
15 |
+
|
16 |
+
class OptimModule(nn.Module):
|
17 |
+
""" Interface for Module that allows registering buffers/parameters with configurable optimizer hyperparameters """
|
18 |
+
|
19 |
+
def register(self, name, tensor, lr=None, wd=0.0):
|
20 |
+
"""Register a tensor with a configurable learning rate and 0 weight decay"""
|
21 |
+
|
22 |
+
if lr == 0.0:
|
23 |
+
self.register_buffer(name, tensor)
|
24 |
+
else:
|
25 |
+
self.register_parameter(name, nn.Parameter(tensor))
|
26 |
+
|
27 |
+
optim = {}
|
28 |
+
if lr is not None: optim["lr"] = lr
|
29 |
+
if wd is not None: optim["weight_decay"] = wd
|
30 |
+
setattr(getattr(self, name), "_optim", optim)
|
31 |
+
|
32 |
+
|
33 |
+
def fftconv_ref(u, k, D, dropout_mask, gelu=True, k_rev=None):
|
34 |
+
# u.shape: B H L
|
35 |
+
seqlen = u.shape[-1]
|
36 |
+
|
37 |
+
fft_size = 2 * seqlen
|
38 |
+
k_f = torch.fft.rfft(k, n=fft_size) / fft_size
|
39 |
+
if k_rev is not None:
|
40 |
+
k_rev_f = torch.fft.rfft(k_rev, n=fft_size) / fft_size
|
41 |
+
k_f = k_f + k_rev_f.conj()
|
42 |
+
u_f = torch.fft.rfft(u.to(dtype=k.dtype), n=fft_size)
|
43 |
+
|
44 |
+
if len(u.shape) > 3:
|
45 |
+
k_f = k_f.unsqueeze(1)
|
46 |
+
|
47 |
+
y = torch.fft.irfft(u_f * k_f, n=fft_size, norm="forward")[..., :seqlen]
|
48 |
+
|
49 |
+
out = y + u * D
|
50 |
+
|
51 |
+
if gelu:
|
52 |
+
out = F.gelu(out)
|
53 |
+
if dropout_mask is not None:
|
54 |
+
return (out * rearrange(dropout_mask, "b H -> b H 1")).to(dtype=u.dtype)
|
55 |
+
else:
|
56 |
+
return out.to(dtype=u.dtype)
|
57 |
+
|
58 |
+
|
59 |
+
@torch.jit.script
|
60 |
+
def mul_sum(q, y):
|
61 |
+
return (q * y).sum(dim=1)
|
62 |
+
|
63 |
+
|
64 |
+
class Sin(nn.Module):
|
65 |
+
def __init__(self, dim, w=10, w_mod=1, train_freq=True):
|
66 |
+
super().__init__()
|
67 |
+
|
68 |
+
init_tensor = torch.ones(1, dim)
|
69 |
+
self.freq = (
|
70 |
+
nn.Parameter(w * init_tensor)
|
71 |
+
if train_freq
|
72 |
+
else w * torch.ones(1, dim)
|
73 |
+
)
|
74 |
+
self.w_mod = w_mod
|
75 |
+
|
76 |
+
def forward(self, x):
|
77 |
+
return torch.sin(self.w_mod * self.freq * x)
|
78 |
+
|
79 |
+
|
80 |
+
class PositionalEmbedding(OptimModule):
|
81 |
+
def __init__(self, emb_dim: int, seq_len: int, lr_pos_emb: float = 1e-5, **kwargs):
|
82 |
+
"""Complex exponential positional embeddings for Hyena filters."""
|
83 |
+
super().__init__()
|
84 |
+
|
85 |
+
self.seq_len = seq_len
|
86 |
+
# The time embedding fed to the filteres is normalized so that t_f = 1
|
87 |
+
t = torch.linspace(0, 1, self.seq_len)[None, :, None] # 1, L, 1
|
88 |
+
|
89 |
+
if emb_dim > 1:
|
90 |
+
bands = (emb_dim - 1) // 2
|
91 |
+
# To compute the right embeddings we use the "proper" linspace
|
92 |
+
t_rescaled = torch.linspace(0, seq_len - 1, seq_len)[None, :, None]
|
93 |
+
w = 2 * math.pi * t_rescaled / seq_len # 1, L, 1
|
94 |
+
|
95 |
+
f = torch.linspace(1e-4, bands - 1, bands)[None, None]
|
96 |
+
z = torch.exp(-1j * f * w)
|
97 |
+
z = torch.cat([t, z.real, z.imag], dim=-1)
|
98 |
+
self.register("z", z, lr=lr_pos_emb)
|
99 |
+
self.register("t", t, lr=0.0)
|
100 |
+
|
101 |
+
def forward(self, L):
|
102 |
+
return self.z[:, :L], self.t[:, :L]
|
103 |
+
|
104 |
+
|
105 |
+
class ExponentialModulation(OptimModule):
|
106 |
+
def __init__(
|
107 |
+
self,
|
108 |
+
d_model,
|
109 |
+
fast_decay_pct=0.3,
|
110 |
+
slow_decay_pct=1.5,
|
111 |
+
target=1e-2,
|
112 |
+
modulation_lr=0.0,
|
113 |
+
shift: float = 0.0,
|
114 |
+
**kwargs,
|
115 |
+
):
|
116 |
+
super().__init__()
|
117 |
+
self.shift = shift
|
118 |
+
max_decay = math.log(target) / fast_decay_pct
|
119 |
+
min_decay = math.log(target) / slow_decay_pct
|
120 |
+
deltas = torch.linspace(min_decay, max_decay, d_model)[None, None]
|
121 |
+
self.register("deltas", deltas, lr=modulation_lr)
|
122 |
+
|
123 |
+
def forward(self, t, x):
|
124 |
+
decay = torch.exp(-t * self.deltas.abs())
|
125 |
+
x = x * (decay + self.shift)
|
126 |
+
return x
|
127 |
+
|
128 |
+
|
129 |
+
class HyenaFilter(OptimModule):
|
130 |
+
def __init__(
|
131 |
+
self,
|
132 |
+
d_model,
|
133 |
+
emb_dim=3, # dim of input to MLP, augments with positional encoding
|
134 |
+
order=16, # width of the implicit MLP
|
135 |
+
seq_len=1024,
|
136 |
+
lr=1e-3,
|
137 |
+
lr_pos_emb=1e-5,
|
138 |
+
dropout=0.0,
|
139 |
+
w=1, # frequency of periodic activations
|
140 |
+
w_mod=1, # non-learnable modification of w
|
141 |
+
wd=0, # weight decay of kernel parameters
|
142 |
+
bias=True,
|
143 |
+
num_inner_mlps=2,
|
144 |
+
linear_mixer=False,
|
145 |
+
modulate: bool = True,
|
146 |
+
normalized=False,
|
147 |
+
bidirectional=False,
|
148 |
+
**kwargs,
|
149 |
+
):
|
150 |
+
"""
|
151 |
+
Implicit long filter with modulation.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
d_model: number of channels in the input
|
155 |
+
emb_dim: dimension of the positional encoding (`emb_dim` - 1) // 2 is the number of bands
|
156 |
+
order: width of the FFN
|
157 |
+
num_inner_mlps: number of inner linear layers inside filter MLP
|
158 |
+
|
159 |
+
Note:
|
160 |
+
filter_dropout is not implemented
|
161 |
+
"""
|
162 |
+
super().__init__()
|
163 |
+
|
164 |
+
self.d_model=d_model
|
165 |
+
self.emb_dim=emb_dim
|
166 |
+
self.seq_len=seq_len
|
167 |
+
self.modulate=modulate
|
168 |
+
self.use_bias = bias
|
169 |
+
self.bidirectional = bidirectional
|
170 |
+
|
171 |
+
self.bias = nn.Parameter(torch.randn(self.d_model))
|
172 |
+
self.dropout = nn.Dropout(dropout)
|
173 |
+
|
174 |
+
act = Sin(dim=order, w=w, w_mod=w_mod)
|
175 |
+
assert (
|
176 |
+
emb_dim % 2 != 0 and emb_dim >= 3
|
177 |
+
), "emb_dim must be odd and greater or equal to 3 (time, sine and cosine)"
|
178 |
+
self.pos_emb = PositionalEmbedding(emb_dim, seq_len, lr_pos_emb)
|
179 |
+
|
180 |
+
# uses a variable number of inner linear layers
|
181 |
+
if linear_mixer is False:
|
182 |
+
self.implicit_filter = nn.Sequential(
|
183 |
+
nn.Linear(emb_dim, order),
|
184 |
+
act,
|
185 |
+
)
|
186 |
+
for i in range(num_inner_mlps):
|
187 |
+
self.implicit_filter.append(nn.Linear(order, order))
|
188 |
+
self.implicit_filter.append(act)
|
189 |
+
self.implicit_filter.append(nn.Linear(order, d_model, bias=False))
|
190 |
+
else:
|
191 |
+
self.implicit_filter = nn.Sequential(
|
192 |
+
nn.Linear(emb_dim, d_model, bias=False),
|
193 |
+
)
|
194 |
+
|
195 |
+
if self.bidirectional:
|
196 |
+
self.implicit_filter_rev = nn.Sequential(
|
197 |
+
nn.Linear(emb_dim, order),
|
198 |
+
act,
|
199 |
+
)
|
200 |
+
for i in range(num_inner_mlps):
|
201 |
+
self.implicit_filter_rev.append(nn.Linear(order, order))
|
202 |
+
self.implicit_filter_rev.append(act)
|
203 |
+
self.implicit_filter_rev.append(nn.Linear(order, d_model, bias=False))
|
204 |
+
|
205 |
+
self.modulation = ExponentialModulation(d_model, **kwargs)
|
206 |
+
|
207 |
+
self.normalized = normalized
|
208 |
+
for c in self.implicit_filter.children():
|
209 |
+
for name, v in c.state_dict().items():
|
210 |
+
optim = {"weight_decay": wd, "lr": lr}
|
211 |
+
setattr(getattr(c, name), "_optim", optim)
|
212 |
+
|
213 |
+
def filter(self, L, *args, **kwargs):
|
214 |
+
z, t = self.pos_emb(L)
|
215 |
+
h = self.implicit_filter(z)
|
216 |
+
if self.modulate:
|
217 |
+
h = self.modulation(t, h)
|
218 |
+
if self.normalized:
|
219 |
+
h = h / torch.norm(h, dim=-1, p=1, keepdim=True)
|
220 |
+
return h
|
221 |
+
|
222 |
+
def filter_rev(self, L, *args, **kwargs):
|
223 |
+
z, t = self.pos_emb(L)
|
224 |
+
h = self.implicit_filter_rev(z)
|
225 |
+
if self.modulate:
|
226 |
+
h = self.modulation(t, h)
|
227 |
+
if self.normalized:
|
228 |
+
h = h / torch.norm(h, dim=-1, p=1, keepdim=True)
|
229 |
+
return h
|
230 |
+
|
231 |
+
def forward(self, x, L, k_fwd=None, k_rev=None, bias=None, *args, **kwargs):
|
232 |
+
if k_fwd is None:
|
233 |
+
k_fwd = self.filter(L)
|
234 |
+
if self.bidirectional and k_rev is None:
|
235 |
+
k_rev = self.filter_rev(L)
|
236 |
+
|
237 |
+
# Ensure compatibility with filters that return a tuple
|
238 |
+
k_fwd = k_fwd[0] if type(k_fwd) is tuple else k_fwd
|
239 |
+
if bias is None:
|
240 |
+
bias = self.bias
|
241 |
+
bias = bias if self.use_bias else 0 * bias
|
242 |
+
|
243 |
+
if self.bidirectional:
|
244 |
+
k_rev = k_rev[0] if type(k_rev) is tuple else k_rev
|
245 |
+
k = F.pad(k_fwd, (0, L)) \
|
246 |
+
+ F.pad(k_rev.flip(-1), (L, 0))
|
247 |
+
else:
|
248 |
+
k = k_fwd
|
249 |
+
|
250 |
+
|
251 |
+
y = fftconv_ref(
|
252 |
+
x,
|
253 |
+
k,
|
254 |
+
bias,
|
255 |
+
dropout_mask=None,
|
256 |
+
gelu=False,
|
257 |
+
)
|
258 |
+
|
259 |
+
return y.to(dtype=x.dtype)
|
monarch_mixer_sequence_mixer.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, Dan Fu and Simran Arora.
|
2 |
+
# Adapted from https://github.com/HazyResearch/safari/blob/main/src/models/sequence/hyena.py
|
3 |
+
|
4 |
+
import torch.nn as nn
|
5 |
+
from einops import rearrange
|
6 |
+
import opt_einsum as oe
|
7 |
+
|
8 |
+
contract = oe.contract
|
9 |
+
from .hyena_utils import HyenaFilter
|
10 |
+
|
11 |
+
|
12 |
+
class MonarchMixerSequenceMixing(nn.Module):
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
d_model,
|
16 |
+
l_max=128,
|
17 |
+
dropout=0.0,
|
18 |
+
hyena_kernel_lr=None,
|
19 |
+
bidirectional=False,
|
20 |
+
hyena_lr_pos_emb=1e-5,
|
21 |
+
hyena_w=10,
|
22 |
+
hyena_w_mod=1,
|
23 |
+
hyena_wd=0.1,
|
24 |
+
hyena_emb_dim=3,
|
25 |
+
hyena_filter_dropout=0.0,
|
26 |
+
hyena_filter_order=16,
|
27 |
+
residual_long_conv=False,
|
28 |
+
hyena_training_additions=False,
|
29 |
+
):
|
30 |
+
super().__init__()
|
31 |
+
|
32 |
+
self.d_model = d_model
|
33 |
+
self.l_max = l_max
|
34 |
+
self.kernel_lr = hyena_kernel_lr
|
35 |
+
self.channels = 1
|
36 |
+
self.bidirectional = bidirectional
|
37 |
+
self.residual_long_conv = residual_long_conv
|
38 |
+
self.NUM_PROJECTIONS = 3
|
39 |
+
|
40 |
+
print('-- Bidirectional:', self.bidirectional)
|
41 |
+
print("-- Using Long Conv Residual:", self.residual_long_conv)
|
42 |
+
print('-- Hyena w:', hyena_w)
|
43 |
+
print('-- Hyena w mod:', hyena_w_mod)
|
44 |
+
print(f"-- Hyena filter order: {hyena_filter_order}")
|
45 |
+
print(f"-- Hyena filter dropout: {hyena_filter_dropout}")
|
46 |
+
print(f"-- Hyena filter wd: {hyena_wd}")
|
47 |
+
print(f"-- Hyena filter emb dim: {hyena_emb_dim}")
|
48 |
+
print(f"-- Hyena filter lr: {hyena_kernel_lr}")
|
49 |
+
print(f"-- Hyena filter lr pos emb: {hyena_lr_pos_emb}")
|
50 |
+
|
51 |
+
self.filter_fn = HyenaFilter(
|
52 |
+
self.d_model,
|
53 |
+
order=hyena_filter_order,
|
54 |
+
seq_len=self.l_max,
|
55 |
+
dropout=hyena_filter_dropout,
|
56 |
+
bidirectional=self.bidirectional,
|
57 |
+
lr=hyena_kernel_lr,
|
58 |
+
lr_pos_emb=hyena_lr_pos_emb,
|
59 |
+
w=hyena_w, # frequency of periodic activations
|
60 |
+
w_mod=hyena_w_mod,
|
61 |
+
wd=hyena_wd, # weight decay of kernel parameters
|
62 |
+
emb_dim=hyena_emb_dim,
|
63 |
+
)
|
64 |
+
|
65 |
+
if self.residual_long_conv:
|
66 |
+
self.filter_fn2 = HyenaFilter(
|
67 |
+
self.d_model,
|
68 |
+
order=hyena_filter_order,
|
69 |
+
seq_len=self.l_max,
|
70 |
+
dropout=hyena_filter_dropout,
|
71 |
+
bidirectional=self.bidirectional,
|
72 |
+
lr=hyena_kernel_lr,
|
73 |
+
lr_pos_emb=hyena_lr_pos_emb,
|
74 |
+
w=hyena_w, # frequency of periodic activations
|
75 |
+
w_mod=hyena_w_mod,
|
76 |
+
wd=hyena_wd, # weight decay of kernel parameters
|
77 |
+
emb_dim=hyena_emb_dim,
|
78 |
+
)
|
79 |
+
|
80 |
+
# setup projections
|
81 |
+
self.in_linear = nn.Linear(d_model, 3 * d_model)
|
82 |
+
self.out_linear = nn.Linear(d_model, d_model)
|
83 |
+
self.hyena_training_additions = hyena_training_additions
|
84 |
+
if self.hyena_training_additions:
|
85 |
+
self.act = nn.Identity()
|
86 |
+
self.drop = nn.Dropout(dropout)
|
87 |
+
self.layernorm = nn.LayerNorm(d_model)
|
88 |
+
|
89 |
+
# setup short conv
|
90 |
+
total_width = self.d_model * self.NUM_PROJECTIONS
|
91 |
+
self.short_filter = nn.Conv1d(
|
92 |
+
in_channels=total_width,
|
93 |
+
out_channels=total_width,
|
94 |
+
kernel_size=3,
|
95 |
+
groups=total_width,
|
96 |
+
padding=2,
|
97 |
+
)
|
98 |
+
|
99 |
+
|
100 |
+
def forward(self, u, **kwargs):
|
101 |
+
# u is B L H
|
102 |
+
if self.hyena_training_additions:
|
103 |
+
u = self.layernorm(u)
|
104 |
+
L = u.size(-2)
|
105 |
+
|
106 |
+
# in projection
|
107 |
+
u_orig = u
|
108 |
+
u = self.in_linear(u)
|
109 |
+
u = rearrange(u, "b l d -> b d l")
|
110 |
+
|
111 |
+
# short filter
|
112 |
+
uc = self.short_filter(u)[..., :L]
|
113 |
+
|
114 |
+
x1, x2, v = uc.split(self.d_model, dim=1)
|
115 |
+
|
116 |
+
v = v * x1
|
117 |
+
if self.hyena_training_additions:
|
118 |
+
v = self.drop(v)
|
119 |
+
|
120 |
+
k = self.filter_fn.filter(L, device=u.device)
|
121 |
+
k = rearrange(k, "c l d -> c d l")[0] # `c` is always 1 by default
|
122 |
+
|
123 |
+
if self.bidirectional:
|
124 |
+
k_rev = self.filter_fn.filter_rev(L, device=u.device)
|
125 |
+
k_rev = rearrange(k_rev, "c l d -> c d l")[0] # `c` is always 1 by default
|
126 |
+
else:
|
127 |
+
k_rev = None
|
128 |
+
|
129 |
+
y = self.filter_fn(v, L, k_fwd=k, k_rev=k_rev, bias= self.filter_fn.bias[None, :, None])
|
130 |
+
|
131 |
+
if self.residual_long_conv:
|
132 |
+
k2 = self.filter_fn2.filter(L, device=u.device)
|
133 |
+
k2 = rearrange(k2, "c l d -> c d l")[0]
|
134 |
+
|
135 |
+
if self.bidirectional:
|
136 |
+
k2_rev = self.filter_fn2.filter_rev(L, device=u.device)
|
137 |
+
k2_rev = rearrange(k2_rev, "c l d -> c d l")[0] # `c` is always 1 by default
|
138 |
+
else:
|
139 |
+
k2_rev = None
|
140 |
+
|
141 |
+
yu = self.filter_fn2(u_orig.transpose(-1, -2), L, k_fwd=k2, k_rev=k2_rev, bias= self.filter_fn2.bias[None, :, None])
|
142 |
+
|
143 |
+
# post gating
|
144 |
+
y = y * x2
|
145 |
+
|
146 |
+
if self.residual_long_conv:
|
147 |
+
y = y + yu
|
148 |
+
|
149 |
+
y = y.transpose(-1, -2)
|
150 |
+
if self.hyena_training_additions:
|
151 |
+
y = self.drop(self.act(y))
|
152 |
+
y = self.out_linear(y)
|
153 |
+
|
154 |
+
return y, None
|
155 |
+
|
156 |
+
|
model.bin → pytorch_model.bin
RENAMED
File without changes
|
structured_linear.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/HazyResearch/fly/tree/master/src/models/layers
|
2 |
+
|
3 |
+
import math
|
4 |
+
from functools import partial
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch.nn import init
|
9 |
+
|
10 |
+
|
11 |
+
class StructuredLinear(nn.Module):
|
12 |
+
|
13 |
+
def __init__(self, in_features, out_features, bias=True, device=None, dtype=None):
|
14 |
+
"""Subclasses should call reset_parameters
|
15 |
+
"""
|
16 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
17 |
+
super().__init__()
|
18 |
+
self.in_features = in_features
|
19 |
+
self.out_features = out_features
|
20 |
+
# Subclasses may override {in,out}_features_extended
|
21 |
+
if not hasattr(self, 'in_features_extended'):
|
22 |
+
self.in_features_extended = in_features
|
23 |
+
if not hasattr(self, 'out_features_extended'):
|
24 |
+
self.out_features_extended = out_features
|
25 |
+
if bias:
|
26 |
+
self.bias = nn.Parameter(torch.zeros(out_features, **factory_kwargs))
|
27 |
+
else:
|
28 |
+
self.register_parameter('bias', None)
|
29 |
+
|
30 |
+
def reset_parameters(self) -> None:
|
31 |
+
self.set_weights_from_dense_init(dense_init_fn_=partial(init.kaiming_uniform_, a=math.sqrt(5)))
|
32 |
+
self.reset_parameters_bias()
|
33 |
+
|
34 |
+
def set_weights_from_dense_init(self, dense_init_fn_):
|
35 |
+
raise NotImplementedError
|
36 |
+
|
37 |
+
def reset_parameters_bias(self):
|
38 |
+
if self.bias is not None:
|
39 |
+
fan_in = self.bias.shape[-1]
|
40 |
+
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
|
41 |
+
init.uniform_(self.bias, -bound, bound)
|
42 |
+
|
43 |
+
@property
|
44 |
+
def saving(self):
|
45 |
+
raise NotImplementedError
|
46 |
+
|
47 |
+
def convert_to_dense_weight(self):
|
48 |
+
factory_kwargs = {'device': self.weight.device, 'dtype': self.weight.dtype}
|
49 |
+
dense_weight = self.forward_matmul(torch.eye(self.in_features, **factory_kwargs)).T
|
50 |
+
return dense_weight
|
51 |
+
|
52 |
+
def preprocess(self, x):
|
53 |
+
in_features = x.shape[-1]
|
54 |
+
if in_features < self.in_features_extended:
|
55 |
+
x = F.pad(x, (0, self.in_features_extended - in_features))
|
56 |
+
return x
|
57 |
+
|
58 |
+
def postprocess(self, output):
|
59 |
+
out_features_extended = output.shape[-1]
|
60 |
+
if out_features_extended > self.out_features:
|
61 |
+
output = output[..., :self.out_features]
|
62 |
+
return output
|
63 |
+
|
64 |
+
def forward_matmul(self, x):
|
65 |
+
raise NotImplementedError
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
output = self.forward_matmul(x)
|
69 |
+
# Convert bias to output.dtype in case of AMP, otherwise bias and activation will be in FP32
|
70 |
+
return (output + self.bias.to(dtype=output.dtype)) if self.bias is not None else output
|