Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.69 +/- 0.32
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f24289c8ae9ae2f828f67b73559bfe1bd8361a085956fedb112e576e867dfeb
|
3 |
+
size 108165
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1280c13d90>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f1280c18a80>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1674051747493826180,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqgmlPg5ZfLtzfAs/qgmlPg5ZfLtzfAs/qgmlPg5ZfLtzfAs/qgmlPg5ZfLtzfAs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6HbTP3c70r/GKok/j/xWv3KFCjw817C/XdPKP7HHRj8j722/OC1Lv7HAmD9XZZ8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACqCaU+Dll8u3N8Cz+lINm8JPSJOfd2jbyqCaU+Dll8u3N8Cz+lINm8JPSJOfd2jbyqCaU+Dll8u3N8Cz+lINm8JPSJOfd2jbyqCaU+Dll8u3N8Cz+lINm8JPSJOfd2jbyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.32233936 -0.00385052 0.5448677 ]\n [ 0.32233936 -0.00385052 0.5448677 ]\n [ 0.32233936 -0.00385052 0.5448677 ]\n [ 0.32233936 -0.00385052 0.5448677 ]]",
|
60 |
+
"desired_goal": "[[ 1.6520662 -1.6424397 1.0716178 ]\n [-0.83979124 0.00845467 -1.3815684 ]\n [ 1.5845753 0.77648455 -0.9294302 ]\n [-0.79365873 1.1933805 0.31132004]]",
|
61 |
+
"observation": "[[ 3.2233936e-01 -3.8505229e-03 5.4486769e-01 -2.6504824e-02\n 2.6312575e-04 -1.7268641e-02]\n [ 3.2233936e-01 -3.8505229e-03 5.4486769e-01 -2.6504824e-02\n 2.6312575e-04 -1.7268641e-02]\n [ 3.2233936e-01 -3.8505229e-03 5.4486769e-01 -2.6504824e-02\n 2.6312575e-04 -1.7268641e-02]\n [ 3.2233936e-01 -3.8505229e-03 5.4486769e-01 -2.6504824e-02\n 2.6312575e-04 -1.7268641e-02]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAh6gRPna41z0KTlE+Ev98vTKHnDzDpY8+HOTbvc+X6btcfew8r8oDPnw/LTwbjS88lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.14224444 0.1053323 0.20439926]\n [-0.06176669 0.01910743 0.28056154]\n [-0.10736868 -0.00712869 0.02886837]\n [ 0.12870286 0.01057422 0.01071479]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICDnv/+ME9r+UhpRSlIwBbJRLMowBdJRHQJsE/2xptaZ1fZQoaAZoCWgPQwiaIsDpXbzmv5SGlFKUaBVLMmgWR0CbBLzl90A+dX2UKGgGaAloD0MI/BnerMG78b+UhpRSlGgVSzJoFkdAmwR5DRc/uHV9lChoBmgJaA9DCFcJFoczv+i/lIaUUpRoFUsyaBZHQJsENpSJj2B1fZQoaAZoCWgPQwjJO4cyVEX1v5SGlFKUaBVLMmgWR0CbBmFrVOKwdX2UKGgGaAloD0MIuvYF9MKd+7+UhpRSlGgVSzJoFkdAmwYe4smOVHV9lChoBmgJaA9DCEYjn1c89d+/lIaUUpRoFUsyaBZHQJsF2z+m3vx1fZQoaAZoCWgPQwj5hVeSPFfrv5SGlFKUaBVLMmgWR0CbBZjawljWdX2UKGgGaAloD0MIP1bw2xAj8b+UhpRSlGgVSzJoFkdAmwe9OymhunV9lChoBmgJaA9DCMjrwaT4+O6/lIaUUpRoFUsyaBZHQJsHeoBJZnt1fZQoaAZoCWgPQwjP2QJC6+Hyv5SGlFKUaBVLMmgWR0CbBzcGC7K8dX2UKGgGaAloD0MID2CRXz9E/L+UhpRSlGgVSzJoFkdAmwb0nG828HV9lChoBmgJaA9DCOhqK/aX3d+/lIaUUpRoFUsyaBZHQJsJIr9VFQV1fZQoaAZoCWgPQwhgd7rzxDP2v5SGlFKUaBVLMmgWR0CbCOA7gbZOdX2UKGgGaAloD0MI6l4n9WVp+r+UhpRSlGgVSzJoFkdAmwicn7YTTXV9lChoBmgJaA9DCItTrYVZaOu/lIaUUpRoFUsyaBZHQJsIWinHead1fZQoaAZoCWgPQwhITiZuFcTbv5SGlFKUaBVLMmgWR0CbCoxsl9jPdX2UKGgGaAloD0MIHlA25Qrv6r+UhpRSlGgVSzJoFkdAmwpJ5Rjz7XV9lChoBmgJaA9DCB1bzxCOWdu/lIaUUpRoFUsyaBZHQJsKBl9Sde91fZQoaAZoCWgPQwgH6pRHN4Lwv5SGlFKUaBVLMmgWR0CbCcO/L1VYdX2UKGgGaAloD0MIp3hcVIsIAsCUhpRSlGgVSzJoFkdAmwv2joIOY3V9lChoBmgJaA9DCCJt409Utvm/lIaUUpRoFUsyaBZHQJsLtAWznih1fZQoaAZoCWgPQwgYsU8AxUjlv5SGlFKUaBVLMmgWR0CbC3BbwBo3dX2UKGgGaAloD0MIppcYy/SL8b+UhpRSlGgVSzJoFkdAmwst9Ujs2XV9lChoBmgJaA9DCGvvU1VoAATAlIaUUpRoFUsyaBZHQJsNTvjOs1d1fZQoaAZoCWgPQwgzNJ4I4nz2v5SGlFKUaBVLMmgWR0CbDQyOaOPvdX2UKGgGaAloD0MIrtnKS/6n77+UhpRSlGgVSzJoFkdAmwzI9gWrO3V9lChoBmgJaA9DCKEsfH2tS+u/lIaUUpRoFUsyaBZHQJsMhnh86WB1fZQoaAZoCWgPQwgXnwJgPIPov5SGlFKUaBVLMmgWR0CbDsV/tpmFdX2UKGgGaAloD0MIOnr83qa/97+UhpRSlGgVSzJoFkdAmw6DDKoybnV9lChoBmgJaA9DCDc10HzO3eO/lIaUUpRoFUsyaBZHQJsOP1oQFs51fZQoaAZoCWgPQwhjZMkcyzv0v5SGlFKUaBVLMmgWR0CbDfz6JqIrdX2UKGgGaAloD0MIi06WWu+36r+UhpRSlGgVSzJoFkdAmxAx4ptrK3V9lChoBmgJaA9DCD/mAwKdSfO/lIaUUpRoFUsyaBZHQJsP77qIJqt1fZQoaAZoCWgPQwi+S6lLxrHjv5SGlFKUaBVLMmgWR0CbD6w+dK/VdX2UKGgGaAloD0MIMnVXdsEg8b+UhpRSlGgVSzJoFkdAmw9ptBOYY3V9lChoBmgJaA9DCJ90IsFUs/O/lIaUUpRoFUsyaBZHQJsRoHgP3BZ1fZQoaAZoCWgPQwgaGk8EcR7yv5SGlFKUaBVLMmgWR0CbEV371qWUdX2UKGgGaAloD0MIUP2DSIbc8b+UhpRSlGgVSzJoFkdAmxEaVdHDrXV9lChoBmgJaA9DCC4gtB6+TOe/lIaUUpRoFUsyaBZHQJsQ19ph4MZ1fZQoaAZoCWgPQwgtz4O7szbzv5SGlFKUaBVLMmgWR0CbEuvZyuIRdX2UKGgGaAloD0MIn6pCA7Hs9L+UhpRSlGgVSzJoFkdAmxKpNwiqyXV9lChoBmgJaA9DCLTjht9NN/G/lIaUUpRoFUsyaBZHQJsSZYU34sV1fZQoaAZoCWgPQwhUAfc8f1rpv5SGlFKUaBVLMmgWR0CbEiL1EmY0dX2UKGgGaAloD0MILexph78m9r+UhpRSlGgVSzJoFkdAmxRXE2pAEHV9lChoBmgJaA9DCCQNbmsLz/C/lIaUUpRoFUsyaBZHQJsUFGkN4JN1fZQoaAZoCWgPQwhFoWXdP9byv5SGlFKUaBVLMmgWR0CbE9DYh+vydX2UKGgGaAloD0MIPbg7a7cd9b+UhpRSlGgVSzJoFkdAmxOOeFtbcHV9lChoBmgJaA9DCLVQMjm1M+u/lIaUUpRoFUsyaBZHQJsVugam4y51fZQoaAZoCWgPQwj6fmq8dFP0v5SGlFKUaBVLMmgWR0CbFXeC04R3dX2UKGgGaAloD0MIZhah2Ara8r+UhpRSlGgVSzJoFkdAmxUz0L+glHV9lChoBmgJaA9DCAcnol9bP+y/lIaUUpRoFUsyaBZHQJsU8VrRBu51fZQoaAZoCWgPQwhpNo/DYP7sv5SGlFKUaBVLMmgWR0CbFxmShakidX2UKGgGaAloD0MIk9+ik6VW6r+UhpRSlGgVSzJoFkdAmxbXF5v9+HV9lChoBmgJaA9DCKM9XkiHB+m/lIaUUpRoFUsyaBZHQJsWk6Lfk3l1fZQoaAZoCWgPQwh3Mc10r5Pvv5SGlFKUaBVLMmgWR0CbFlEr5IpZdX2UKGgGaAloD0MIUn+9woJ79r+UhpRSlGgVSzJoFkdAmxh86eXiSHV9lChoBmgJaA9DCDofniXICPe/lIaUUpRoFUsyaBZHQJsYOmm+Cbt1fZQoaAZoCWgPQwjd66S+LG3hv5SGlFKUaBVLMmgWR0CbF/bkwN9ZdX2UKGgGaAloD0MIbTttjQjG7r+UhpRSlGgVSzJoFkdAmxe0l7dBSnV9lChoBmgJaA9DCB6M2CeA4uu/lIaUUpRoFUsyaBZHQJsZ4jopx3p1fZQoaAZoCWgPQwg6yVaXU4Ljv5SGlFKUaBVLMmgWR0CbGZ/J/5LzdX2UKGgGaAloD0MIGXYYk/7e9b+UhpRSlGgVSzJoFkdAmxlcEzO5a3V9lChoBmgJaA9DCNNqSNxjCQDAlIaUUpRoFUsyaBZHQJsZGZ/kNnZ1fZQoaAZoCWgPQwg+eO3ShsPev5SGlFKUaBVLMmgWR0CbG0yFPBSDdX2UKGgGaAloD0MICJRNucI77L+UhpRSlGgVSzJoFkdAmxsJ79hqkHV9lChoBmgJaA9DCGL4iJgSSeW/lIaUUpRoFUsyaBZHQJsaxlvqC6J1fZQoaAZoCWgPQwg3iqw1lNrkv5SGlFKUaBVLMmgWR0CbGoPv8ZUDdX2UKGgGaAloD0MINPYlGw+23r+UhpRSlGgVSzJoFkdAmxyxhDw6Q3V9lChoBmgJaA9DCO571F+vMPG/lIaUUpRoFUsyaBZHQJscbxaxHG11fZQoaAZoCWgPQwgwnkFD/4Twv5SGlFKUaBVLMmgWR0CbHCuhsZYQdX2UKGgGaAloD0MIox8Np8wN8r+UhpRSlGgVSzJoFkdAmxvpNbkfcXV9lChoBmgJaA9DCJ1LcVXZt/G/lIaUUpRoFUsyaBZHQJseCVjZtel1fZQoaAZoCWgPQwjs+C8QBEjmv5SGlFKUaBVLMmgWR0CbHcbgCOm0dX2UKGgGaAloD0MINZvHYTC/+L+UhpRSlGgVSzJoFkdAmx2DBuXNT3V9lChoBmgJaA9DCFplprT+lu6/lIaUUpRoFUsyaBZHQJsdQJE6T4d1fZQoaAZoCWgPQwhgH5268tnmv5SGlFKUaBVLMmgWR0CbH2piZv1ldX2UKGgGaAloD0MI41C/C1uz27+UhpRSlGgVSzJoFkdAmx8n31zySXV9lChoBmgJaA9DCDS/mgMEc+e/lIaUUpRoFUsyaBZHQJse5EVnEl51fZQoaAZoCWgPQwgwuycPCzXmv5SGlFKUaBVLMmgWR0CbHqHNHH3ldX2UKGgGaAloD0MIvt798V6137+UhpRSlGgVSzJoFkdAmyDS1Vo6CHV9lChoBmgJaA9DCDs1lxsM9ey/lIaUUpRoFUsyaBZHQJsgkFiay8l1fZQoaAZoCWgPQwjJVpdTAmL0v5SGlFKUaBVLMmgWR0CbIEykbgjydX2UKGgGaAloD0MIPpepSfDG87+UhpRSlGgVSzJoFkdAmyAKCL/CInV9lChoBmgJaA9DCF8mipC6ne6/lIaUUpRoFUsyaBZHQJsiSRzRx951fZQoaAZoCWgPQwhr8/+qI0fmv5SGlFKUaBVLMmgWR0CbIgarWAf/dX2UKGgGaAloD0MI++sVFtwP7L+UhpRSlGgVSzJoFkdAmyHDNY8uBnV9lChoBmgJaA9DCK4NFeP8zfC/lIaUUpRoFUsyaBZHQJshgKqn3td1fZQoaAZoCWgPQwjEk93M6If3v5SGlFKUaBVLMmgWR0CbI6O8kD6ndX2UKGgGaAloD0MIkYE8u3xr5b+UhpRSlGgVSzJoFkdAmyNhNyo4uXV9lChoBmgJaA9DCKJjB5W4DvC/lIaUUpRoFUsyaBZHQJsjHZYgaFV1fZQoaAZoCWgPQwgDsWzmkFTlv5SGlFKUaBVLMmgWR0CbIttAs053dX2UKGgGaAloD0MIbQIMy5/v6L+UhpRSlGgVSzJoFkdAmyT2A08/2XV9lChoBmgJaA9DCCSX/5B+e+m/lIaUUpRoFUsyaBZHQJsks3WFvht1fZQoaAZoCWgPQwiL4lXWNkXrv5SGlFKUaBVLMmgWR0CbJG/m1YyPdX2UKGgGaAloD0MI6dK/JJVp8b+UhpRSlGgVSzJoFkdAmyQtapxWDHV9lChoBmgJaA9DCGItPgXAuPS/lIaUUpRoFUsyaBZHQJsmTKji4rl1fZQoaAZoCWgPQwg9tmXAWUrZv5SGlFKUaBVLMmgWR0CbJgo0hvBKdX2UKGgGaAloD0MID9WUZB1O+b+UhpRSlGgVSzJoFkdAmyXGn4wh4nV9lChoBmgJaA9DCPYoXI/Cdey/lIaUUpRoFUsyaBZHQJslhDYywfR1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c1ad66acaed675888037bedf308e8acc1168248c947fb205224fe221457b4eb
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:252597a7eb269b62e81fd41275855ff1447c13fc3ec1b20154af875a57a728ae
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.0.12-76060006-generic-x86_64-with-glibc2.27 # 202212290932~1671652965~22.04~452ea9d SMP PREEMPT_DYNAMIC Wed D
|
2 |
+
- Python: 3.10.8
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.3
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1280c13d90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1280c18a80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674051747493826180, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqgmlPg5ZfLtzfAs/qgmlPg5ZfLtzfAs/qgmlPg5ZfLtzfAs/qgmlPg5ZfLtzfAs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6HbTP3c70r/GKok/j/xWv3KFCjw817C/XdPKP7HHRj8j722/OC1Lv7HAmD9XZZ8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACqCaU+Dll8u3N8Cz+lINm8JPSJOfd2jbyqCaU+Dll8u3N8Cz+lINm8JPSJOfd2jbyqCaU+Dll8u3N8Cz+lINm8JPSJOfd2jbyqCaU+Dll8u3N8Cz+lINm8JPSJOfd2jbyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.32233936 -0.00385052 0.5448677 ]\n [ 0.32233936 -0.00385052 0.5448677 ]\n [ 0.32233936 -0.00385052 0.5448677 ]\n [ 0.32233936 -0.00385052 0.5448677 ]]", "desired_goal": "[[ 1.6520662 -1.6424397 1.0716178 ]\n [-0.83979124 0.00845467 -1.3815684 ]\n [ 1.5845753 0.77648455 -0.9294302 ]\n [-0.79365873 1.1933805 0.31132004]]", "observation": "[[ 3.2233936e-01 -3.8505229e-03 5.4486769e-01 -2.6504824e-02\n 2.6312575e-04 -1.7268641e-02]\n [ 3.2233936e-01 -3.8505229e-03 5.4486769e-01 -2.6504824e-02\n 2.6312575e-04 -1.7268641e-02]\n [ 3.2233936e-01 -3.8505229e-03 5.4486769e-01 -2.6504824e-02\n 2.6312575e-04 -1.7268641e-02]\n [ 3.2233936e-01 -3.8505229e-03 5.4486769e-01 -2.6504824e-02\n 2.6312575e-04 -1.7268641e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAh6gRPna41z0KTlE+Ev98vTKHnDzDpY8+HOTbvc+X6btcfew8r8oDPnw/LTwbjS88lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.14224444 0.1053323 0.20439926]\n [-0.06176669 0.01910743 0.28056154]\n [-0.10736868 -0.00712869 0.02886837]\n [ 0.12870286 0.01057422 0.01071479]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICDnv/+ME9r+UhpRSlIwBbJRLMowBdJRHQJsE/2xptaZ1fZQoaAZoCWgPQwiaIsDpXbzmv5SGlFKUaBVLMmgWR0CbBLzl90A+dX2UKGgGaAloD0MI/BnerMG78b+UhpRSlGgVSzJoFkdAmwR5DRc/uHV9lChoBmgJaA9DCFcJFoczv+i/lIaUUpRoFUsyaBZHQJsENpSJj2B1fZQoaAZoCWgPQwjJO4cyVEX1v5SGlFKUaBVLMmgWR0CbBmFrVOKwdX2UKGgGaAloD0MIuvYF9MKd+7+UhpRSlGgVSzJoFkdAmwYe4smOVHV9lChoBmgJaA9DCEYjn1c89d+/lIaUUpRoFUsyaBZHQJsF2z+m3vx1fZQoaAZoCWgPQwj5hVeSPFfrv5SGlFKUaBVLMmgWR0CbBZjawljWdX2UKGgGaAloD0MIP1bw2xAj8b+UhpRSlGgVSzJoFkdAmwe9OymhunV9lChoBmgJaA9DCMjrwaT4+O6/lIaUUpRoFUsyaBZHQJsHeoBJZnt1fZQoaAZoCWgPQwjP2QJC6+Hyv5SGlFKUaBVLMmgWR0CbBzcGC7K8dX2UKGgGaAloD0MID2CRXz9E/L+UhpRSlGgVSzJoFkdAmwb0nG828HV9lChoBmgJaA9DCOhqK/aX3d+/lIaUUpRoFUsyaBZHQJsJIr9VFQV1fZQoaAZoCWgPQwhgd7rzxDP2v5SGlFKUaBVLMmgWR0CbCOA7gbZOdX2UKGgGaAloD0MI6l4n9WVp+r+UhpRSlGgVSzJoFkdAmwicn7YTTXV9lChoBmgJaA9DCItTrYVZaOu/lIaUUpRoFUsyaBZHQJsIWinHead1fZQoaAZoCWgPQwhITiZuFcTbv5SGlFKUaBVLMmgWR0CbCoxsl9jPdX2UKGgGaAloD0MIHlA25Qrv6r+UhpRSlGgVSzJoFkdAmwpJ5Rjz7XV9lChoBmgJaA9DCB1bzxCOWdu/lIaUUpRoFUsyaBZHQJsKBl9Sde91fZQoaAZoCWgPQwgH6pRHN4Lwv5SGlFKUaBVLMmgWR0CbCcO/L1VYdX2UKGgGaAloD0MIp3hcVIsIAsCUhpRSlGgVSzJoFkdAmwv2joIOY3V9lChoBmgJaA9DCCJt409Utvm/lIaUUpRoFUsyaBZHQJsLtAWznih1fZQoaAZoCWgPQwgYsU8AxUjlv5SGlFKUaBVLMmgWR0CbC3BbwBo3dX2UKGgGaAloD0MIppcYy/SL8b+UhpRSlGgVSzJoFkdAmwst9Ujs2XV9lChoBmgJaA9DCGvvU1VoAATAlIaUUpRoFUsyaBZHQJsNTvjOs1d1fZQoaAZoCWgPQwgzNJ4I4nz2v5SGlFKUaBVLMmgWR0CbDQyOaOPvdX2UKGgGaAloD0MIrtnKS/6n77+UhpRSlGgVSzJoFkdAmwzI9gWrO3V9lChoBmgJaA9DCKEsfH2tS+u/lIaUUpRoFUsyaBZHQJsMhnh86WB1fZQoaAZoCWgPQwgXnwJgPIPov5SGlFKUaBVLMmgWR0CbDsV/tpmFdX2UKGgGaAloD0MIOnr83qa/97+UhpRSlGgVSzJoFkdAmw6DDKoybnV9lChoBmgJaA9DCDc10HzO3eO/lIaUUpRoFUsyaBZHQJsOP1oQFs51fZQoaAZoCWgPQwhjZMkcyzv0v5SGlFKUaBVLMmgWR0CbDfz6JqIrdX2UKGgGaAloD0MIi06WWu+36r+UhpRSlGgVSzJoFkdAmxAx4ptrK3V9lChoBmgJaA9DCD/mAwKdSfO/lIaUUpRoFUsyaBZHQJsP77qIJqt1fZQoaAZoCWgPQwi+S6lLxrHjv5SGlFKUaBVLMmgWR0CbD6w+dK/VdX2UKGgGaAloD0MIMnVXdsEg8b+UhpRSlGgVSzJoFkdAmw9ptBOYY3V9lChoBmgJaA9DCJ90IsFUs/O/lIaUUpRoFUsyaBZHQJsRoHgP3BZ1fZQoaAZoCWgPQwgaGk8EcR7yv5SGlFKUaBVLMmgWR0CbEV371qWUdX2UKGgGaAloD0MIUP2DSIbc8b+UhpRSlGgVSzJoFkdAmxEaVdHDrXV9lChoBmgJaA9DCC4gtB6+TOe/lIaUUpRoFUsyaBZHQJsQ19ph4MZ1fZQoaAZoCWgPQwgtz4O7szbzv5SGlFKUaBVLMmgWR0CbEuvZyuIRdX2UKGgGaAloD0MIn6pCA7Hs9L+UhpRSlGgVSzJoFkdAmxKpNwiqyXV9lChoBmgJaA9DCLTjht9NN/G/lIaUUpRoFUsyaBZHQJsSZYU34sV1fZQoaAZoCWgPQwhUAfc8f1rpv5SGlFKUaBVLMmgWR0CbEiL1EmY0dX2UKGgGaAloD0MILexph78m9r+UhpRSlGgVSzJoFkdAmxRXE2pAEHV9lChoBmgJaA9DCCQNbmsLz/C/lIaUUpRoFUsyaBZHQJsUFGkN4JN1fZQoaAZoCWgPQwhFoWXdP9byv5SGlFKUaBVLMmgWR0CbE9DYh+vydX2UKGgGaAloD0MIPbg7a7cd9b+UhpRSlGgVSzJoFkdAmxOOeFtbcHV9lChoBmgJaA9DCLVQMjm1M+u/lIaUUpRoFUsyaBZHQJsVugam4y51fZQoaAZoCWgPQwj6fmq8dFP0v5SGlFKUaBVLMmgWR0CbFXeC04R3dX2UKGgGaAloD0MIZhah2Ara8r+UhpRSlGgVSzJoFkdAmxUz0L+glHV9lChoBmgJaA9DCAcnol9bP+y/lIaUUpRoFUsyaBZHQJsU8VrRBu51fZQoaAZoCWgPQwhpNo/DYP7sv5SGlFKUaBVLMmgWR0CbFxmShakidX2UKGgGaAloD0MIk9+ik6VW6r+UhpRSlGgVSzJoFkdAmxbXF5v9+HV9lChoBmgJaA9DCKM9XkiHB+m/lIaUUpRoFUsyaBZHQJsWk6Lfk3l1fZQoaAZoCWgPQwh3Mc10r5Pvv5SGlFKUaBVLMmgWR0CbFlEr5IpZdX2UKGgGaAloD0MIUn+9woJ79r+UhpRSlGgVSzJoFkdAmxh86eXiSHV9lChoBmgJaA9DCDofniXICPe/lIaUUpRoFUsyaBZHQJsYOmm+Cbt1fZQoaAZoCWgPQwjd66S+LG3hv5SGlFKUaBVLMmgWR0CbF/bkwN9ZdX2UKGgGaAloD0MIbTttjQjG7r+UhpRSlGgVSzJoFkdAmxe0l7dBSnV9lChoBmgJaA9DCB6M2CeA4uu/lIaUUpRoFUsyaBZHQJsZ4jopx3p1fZQoaAZoCWgPQwg6yVaXU4Ljv5SGlFKUaBVLMmgWR0CbGZ/J/5LzdX2UKGgGaAloD0MIGXYYk/7e9b+UhpRSlGgVSzJoFkdAmxlcEzO5a3V9lChoBmgJaA9DCNNqSNxjCQDAlIaUUpRoFUsyaBZHQJsZGZ/kNnZ1fZQoaAZoCWgPQwg+eO3ShsPev5SGlFKUaBVLMmgWR0CbG0yFPBSDdX2UKGgGaAloD0MICJRNucI77L+UhpRSlGgVSzJoFkdAmxsJ79hqkHV9lChoBmgJaA9DCGL4iJgSSeW/lIaUUpRoFUsyaBZHQJsaxlvqC6J1fZQoaAZoCWgPQwg3iqw1lNrkv5SGlFKUaBVLMmgWR0CbGoPv8ZUDdX2UKGgGaAloD0MINPYlGw+23r+UhpRSlGgVSzJoFkdAmxyxhDw6Q3V9lChoBmgJaA9DCO571F+vMPG/lIaUUpRoFUsyaBZHQJscbxaxHG11fZQoaAZoCWgPQwgwnkFD/4Twv5SGlFKUaBVLMmgWR0CbHCuhsZYQdX2UKGgGaAloD0MIox8Np8wN8r+UhpRSlGgVSzJoFkdAmxvpNbkfcXV9lChoBmgJaA9DCJ1LcVXZt/G/lIaUUpRoFUsyaBZHQJseCVjZtel1fZQoaAZoCWgPQwjs+C8QBEjmv5SGlFKUaBVLMmgWR0CbHcbgCOm0dX2UKGgGaAloD0MINZvHYTC/+L+UhpRSlGgVSzJoFkdAmx2DBuXNT3V9lChoBmgJaA9DCFplprT+lu6/lIaUUpRoFUsyaBZHQJsdQJE6T4d1fZQoaAZoCWgPQwhgH5268tnmv5SGlFKUaBVLMmgWR0CbH2piZv1ldX2UKGgGaAloD0MI41C/C1uz27+UhpRSlGgVSzJoFkdAmx8n31zySXV9lChoBmgJaA9DCDS/mgMEc+e/lIaUUpRoFUsyaBZHQJse5EVnEl51fZQoaAZoCWgPQwgwuycPCzXmv5SGlFKUaBVLMmgWR0CbHqHNHH3ldX2UKGgGaAloD0MIvt798V6137+UhpRSlGgVSzJoFkdAmyDS1Vo6CHV9lChoBmgJaA9DCDs1lxsM9ey/lIaUUpRoFUsyaBZHQJsgkFiay8l1fZQoaAZoCWgPQwjJVpdTAmL0v5SGlFKUaBVLMmgWR0CbIEykbgjydX2UKGgGaAloD0MIPpepSfDG87+UhpRSlGgVSzJoFkdAmyAKCL/CInV9lChoBmgJaA9DCF8mipC6ne6/lIaUUpRoFUsyaBZHQJsiSRzRx951fZQoaAZoCWgPQwhr8/+qI0fmv5SGlFKUaBVLMmgWR0CbIgarWAf/dX2UKGgGaAloD0MI++sVFtwP7L+UhpRSlGgVSzJoFkdAmyHDNY8uBnV9lChoBmgJaA9DCK4NFeP8zfC/lIaUUpRoFUsyaBZHQJshgKqn3td1fZQoaAZoCWgPQwjEk93M6If3v5SGlFKUaBVLMmgWR0CbI6O8kD6ndX2UKGgGaAloD0MIkYE8u3xr5b+UhpRSlGgVSzJoFkdAmyNhNyo4uXV9lChoBmgJaA9DCKJjB5W4DvC/lIaUUpRoFUsyaBZHQJsjHZYgaFV1fZQoaAZoCWgPQwgDsWzmkFTlv5SGlFKUaBVLMmgWR0CbIttAs053dX2UKGgGaAloD0MIbQIMy5/v6L+UhpRSlGgVSzJoFkdAmyT2A08/2XV9lChoBmgJaA9DCCSX/5B+e+m/lIaUUpRoFUsyaBZHQJsks3WFvht1fZQoaAZoCWgPQwiL4lXWNkXrv5SGlFKUaBVLMmgWR0CbJG/m1YyPdX2UKGgGaAloD0MI6dK/JJVp8b+UhpRSlGgVSzJoFkdAmyQtapxWDHV9lChoBmgJaA9DCGItPgXAuPS/lIaUUpRoFUsyaBZHQJsmTKji4rl1fZQoaAZoCWgPQwg9tmXAWUrZv5SGlFKUaBVLMmgWR0CbJgo0hvBKdX2UKGgGaAloD0MID9WUZB1O+b+UhpRSlGgVSzJoFkdAmyXGn4wh4nV9lChoBmgJaA9DCPYoXI/Cdey/lIaUUpRoFUsyaBZHQJslhDYywfR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-6.0.12-76060006-generic-x86_64-with-glibc2.27 # 202212290932~1671652965~22.04~452ea9d SMP PREEMPT_DYNAMIC Wed D", "Python": "3.10.8", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.686450480914209, "std_reward": 0.31824069888576134, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T15:06:16.575899"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3dc52780177819e82b9605cd5a931e40e6b163f2091ec07b9161a105da3aa729
|
3 |
+
size 3273
|