File size: 6,535 Bytes
243e7fc
 
 
 
 
 
 
 
 
 
733b01c
243e7fc
15e7fea
243e7fc
 
 
 
 
a849304
243e7fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
733b01c
 
243e7fc
 
 
 
 
 
 
733b01c
243e7fc
 
 
 
 
 
 
 
 
 
733b01c
 
243e7fc
 
 
 
 
 
 
733b01c
243e7fc
733b01c
243e7fc
 
 
 
 
 
 
 
 
 
 
 
 
e3fcc0e
243e7fc
733b01c
47ea8db
243e7fc
47ea8db
243e7fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
language:
  - en
  - ja
library_name: transformers
pipeline_tag: text-generation
tag: moe
license: apache-2.0
---

# Swallow-MX-8x7b-NVE-v0.1

Our Swallow-MX-8x7b-NVE-v0.1 model has undergone continuous pre-training from the [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1), primarily with the addition of Japanese language data. 

![logo](./logo.png)

## Model Details

* **Model type**: Please refer to [Mixtral technical report](https://arxiv.org/abs/2401.04088) for details on the model architecture. 
* **Language(s)**: Japanese English
* **Tokenizer**: This model utilizes the same tokenizer as employed by Mixtral-8x7B-Instruct-v0.1.
* **Contact**: swallow[at]nlp.c.titech.ac.jp 

## Base Model Performance

### Japanese version

|Model|Size|JCommonsenseQA|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|
|---|---|---|---|---|---|---|---|---|---|
|   |   |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot|
| Llama 2 | 7B | 0.3852 | 0.4240 | 0.3410 | 0.7917 | 0.1905 | 0.0760 | 0.1783 | 0.1738 |
| Swallow | 7B | 0.4808 | 0.5078 | 0.5968 | 0.8573 | 0.1830 | 0.1240 | 0.2510 | 0.1511 |
| Swallow-Plus | 7B | 0.5478 | 0.5493 | 0.6030 | 0.8544 | 0.1806 | 0.1360 | 0.2568 | 0.1441 |
| Swallow-NVE | 7B | 0.5433 | 0.5425 | 0.5729 | 0.8684 | 0.2117 | 0.1200 | 0.2405 | 0.1512 |
| Mistral-7B-v0.1 |  7B | 0.7301 | 0.4245	| 0.2722 | 0.8563 | 0.2006 | 0.1760 | 0.1405 | 0.1733 |
|Swallow-MS-7b-v0.1| 7B | 0.8570 | 0.4915 | 0.5519 | 0.8802 | 0.1988 | 0.2240 | 0.2494 | 0.1667 |
| Llama 2 | 13B | 0.6997 | 0.4415 | 0.4170 | 0.8533 | 0.2139 | 0.1320 | 0.2146 | 0.1982 |
| Swallow | 13B | 0.7837 | 0.5063 | 0.6398 | 0.9005 | 0.2168 | 0.2040 | 0.2720 | 0.1771 |
| Swallow-NVE | 13B | 0.7712 | 0.5438 | 0.6351 | 0.9030 | 0.2294 | 0.2120 | 0.2735 | 0.1817 |
| Llama 2 | 70B | 0.8686 | 0.4656 | 0.5256 | 0.9080 | 0.2361 | 0.3560 | 0.2643 | **0.2398** |
| Swallow | 70B | 0.9348 | **0.6290** | 0.6960 | 0.9176 | 0.2266 | **0.4840** | **0.3043** | 0.2298 |
| Swallow-NVE | 70B | **0.9410** | 0.5759 | **0.7024** | **0.9254** | **0.2758** | 0.4720 | 0.3042 | 0.2322 |
|Mixtral-8x7B-v0.1|8x7B|0.8347|0.5335|0.3549|0.8847|0.2192|0.3120|0.1970|0.1987|
|Swallow-MX-8x7b-NVE-v0.1|8x7B|0.9258|0.5843|0.5687|0.9148|0.2589|0.4360|0.2705|0.2074|

### English version

|Model|Size|OpenBookQA|TriviaQA|HellaSwag|SQuAD2.0|XWINO|GSM8K|
|---|---|---|---|---|---|---|---|
|   |   |8-shot|8-shot|8-shot|8-shot|8-shot|8-shot|
| Llama 2 | 7B    | 0.3580     | 0.6265   | 0.5860    | 0.3207   | 0.9049 | 0.1410 |
| Swallow | 7B    | 0.3180     | 0.4836   | 0.5308    | 0.3125   | 0.8817 | 0.1130 |
| Swallow-Plus | 7B | 0.3280     | 0.4558   | 0.5259    | 0.3134   | 0.8929 | 0.1061 |
| Swallow-NVE | 7B | 0.3180     | 0.5079   | 0.5329    | 0.2919   | 0.8817 | 0.0986 |
| Mistral-7B-v0.1 |  7B | 0.3660 | 0.7050 | 0.6264 | 0.3799 | 0.9157 | 0.3533 | 0.3440 | 0.5976 | 0.5810 | 0.3364 | 0.9037 | 0.2623 |
|Swallow-MS-7b-v0.1| 7B | 0.3440 | 0.5976 | 0.5810 | 0.3364 | 0.9037 | 0.2623 |
| Llama 2 | 13B   | 0.3760     | 0.7255   | 0.6148    | 0.3681   | 0.9140 | 0.2403 |
| Swallow | 13B   | 0.3500     | 0.5852   | 0.5660    | 0.3406   | 0.9075 | 0.2039 |
| Swallow-NVE | 13B | 0.3460     | 0.6025   | 0.5700    | 0.3478   | 0.9006 | 0.1751 |
| Llama 2 | 70B   | **0.4280** | **0.8239** | **0.6742** | 0.3770 | **0.9290** | 0.5284 |
| Swallow | 70B   | 0.4220     | 0.7756   | 0.6458    | 0.3745   | 0.9204 | 0.4867 |
| Swallow-NVE | 70B | 0.4240     | 0.7817   | 0.6439    | 0.3451   | 0.9256 | 0.4943 |
|Mixtral-8x7B-v0.1|8x7B|0.3960|0.7989|0.6678|**0.3842**|0.9204|**0.5747**|
|Swallow-MX-8x7b-NVE-v0.1|8x7B|0.3740|0.7847|0.6520|0.3801|0.9170|0.5694|

Please note that Swallow-MX-8x7b-NVE-v0.1 is not derived from Mixtral-8x7B-v0.1, but rather underwent continued pre-training from Mixtral-8x7B-Instruct-v0.1.

## Usage

First install additional dependencies in [requirements.txt](./requirements.txt):

```sh
pip install -r requirements.txt
```

### Use the base model

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_name = "tokyotech-llm/Swallow-MX-8x7b-NVE-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_name)

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
prompt = "東京工業大学の主なキャンパスは、"
input_ids = tokenizer.encode(
    prompt,
    add_special_tokens=False,
    return_tensors="pt"
)
tokens = model.generate(
    input_ids.to(device=model.device),
    max_new_tokens=128,
    temperature=0.99,
    top_p=0.95,
    do_sample=True,
)

out = tokenizer.decode(tokens[0], skip_special_tokens=True)
print(out)
```

## Training Datasets

### Continual Pre-Training
The following datasets were used for continual pre-training.

- [Algebraic Stack](https://huggingface.co/datasets/EleutherAI/proof-pile-2)
- [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
- [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
- [Swallow Corpus](https://chokkan.org/temp/tokyotech-llm/swallow-corpus)
- [The Pile](https://huggingface.co/datasets/EleutherAI/pile)
- [The Vault](https://github.com/FSoft-AI4Code/TheVault)

## Risks and Limitations

The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.

## Acknowledgements

We thank Mistral AI for releasing Mixtral-8x7B-Instruct-v0.1 under an open license for others to build on.

Our project is supported by the [ABCI Large-scale Language Model Building Support Program](https://abci.ai/en/link/llm_support_program.html) of the National Institute of Advanced Industrial Science and Technology. 

## License

apache-2.0

## Authors

Here are the team members:
- From [Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members:
  - [Naoaki Okazaki](https://www.chokkan.org/index.ja.html)
  - [Sakae Mizuki](https://s-mizuki-nlp.github.io/)
  - [Hiroki Iida](https://meshidenn.github.io/)
  - [Mengsay Loem](https://loem-ms.github.io/)
  - [Shota Hirai](https://huggingface.co/Kotemo428)
  - [Kakeru Hattori](https://aya-se.vercel.app/)
  - [Masanari Ohi](https://twitter.com/stjohn2007)
- From [YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members:
  - [Rio Yokota](https://twitter.com/rioyokota)
  - [Kazuki Fujii](https://twitter.com/okoge_kaz)
  - [Taishi Nakamura](https://twitter.com/Setuna7777_2)