Edit model card

T5-base-nsp

T5-base-nsp is fine-tuned for Next Sentence Prediction task on the wikipedia dataset using t5-base model. It was introduced in this paper and first released on this page.

Model description

T5-base-nsp is a Transformer-based model which was fine-tuned for Next Sentence Prediction task on 22000 English Wikipedia articles.

Intended uses

  • Apply Next Sentence Prediction tasks. (compare the results with BERT models since BERT natively supports this task)
  • See how to fine-tune a T5 model using our code
  • Check our paper to see its results

How to use

You can use this model directly with a pipeline for next sentence prediction. Here is how to use this model in PyTorch:

Necessary Initialization

import torch
from transformers import T5ForConditionalGeneration, MT5Tokenizer
from huggingface_hub import hf_hub_download

class ModelNSP(torch.nn.Module):
    def __init__(self, pretrained_model, tokenizer, nsp_dim=300):
        super(ModelNSP, self).__init__()
        self.zero_token, self.one_token = (self.find_label_encoding(x, tokenizer).item() for x in ["0", "1"])
        self.core_model = T5ForConditionalGeneration.from_pretrained(pretrained_model)
        self.nsp_head = torch.nn.Sequential(torch.nn.Linear(self.core_model.config.hidden_size, nsp_dim),
                                      torch.nn.Linear(nsp_dim, nsp_dim), torch.nn.Linear(nsp_dim, 2))

    def forward(self, input_ids, attention_mask=None):
        outputs = self.core_model.generate(input_ids=input_ids, attention_mask=attention_mask, max_length=3,
                                           output_scores=True, return_dict_in_generate=True)
        logits = [torch.Tensor([score[self.zero_token], score[self.one_token]]) for score in outputs.scores[1]]
        return torch.stack(logits).softmax(dim=-1)

    @staticmethod
    def find_label_encoding(input_str, tokenizer):
        encoded_str = tokenizer.encode(input_str, add_special_tokens=False, return_tensors="pt")
        return (torch.index_select(encoded_str, 1, torch.tensor([1])) if encoded_str.size(dim=1) == 2 else encoded_str)

tokenizer = MT5Tokenizer.from_pretrained("tolga-ozturk/t5-base-nsp")
model = torch.nn.DataParallel(ModelNSP("t5-base", tokenizer).eval())
model.load_state_dict(torch.load(hf_hub_download(repo_id="tolga-ozturk/t5-base-nsp", filename="model_weights.bin")))

Inference

batch_texts = [("binary classification: In Italy, pizza is presented unsliced.", "The sky is blue."),
    ("binary classification: In Italy, pizza is presented unsliced.", "However, it is served sliced in Turkey.")]
encoded_dict = tokenizer.batch_encode_plus(batch_text_or_text_pairs=batch_texts, truncation="longest_first", padding=True, return_tensors="pt", return_attention_mask=True, max_length=256)
print(torch.argmax(model(encoded_dict.input_ids, attention_mask=encoded_dict.attention_mask), dim=-1))

BibTeX entry and citation info

@misc{title={How Different Is Stereotypical Bias Across Languages?}, 
      author={Ibrahim Tolga Öztürk and Rostislav Nedelchev and Christian Heumann and Esteban Garces Arias and Marius Roger and Bernd Bischl and Matthias Aßenmacher},
      year={2023},
      eprint={2307.07331},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

The work is done with Ludwig-Maximilians-Universität Statistics group, don't forget to check out their huggingface page for other interesting works!

Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train tolga-ozturk/t5-base-nsp