File size: 1,910 Bytes
757bc89 29392c3 77dd825 29392c3 757bc89 29392c3 77dd825 29392c3 77dd825 29392c3 9be7cca 29392c3 77dd825 29392c3 77dd825 29392c3 77dd825 9be7cca 29392c3 77dd825 29392c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: gpt2-sweep
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-sweep
This model is a fine-tuned version of [gpt2-large](https://huggingface.co/gpt2-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0808
- Accuracy: 0.8556
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.294477077303931e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 2.4827 | 0.19 | 1000 | 2.4565 | 0.8520 |
| 2.6468 | 0.37 | 2000 | 2.3303 | 0.8530 |
| 2.5106 | 0.56 | 3000 | 2.2487 | 0.8537 |
| 2.0732 | 0.74 | 4000 | 2.2020 | 0.8541 |
| 2.159 | 0.93 | 5000 | 2.1594 | 0.8545 |
| 1.856 | 1.12 | 6000 | 2.1518 | 0.8548 |
| 1.9138 | 1.3 | 7000 | 2.1261 | 0.8551 |
| 1.8055 | 1.49 | 8000 | 2.1126 | 0.8552 |
| 2.0385 | 1.67 | 9000 | 2.1008 | 0.8554 |
| 1.9648 | 1.86 | 10000 | 2.0858 | 0.8555 |
### Framework versions
- Transformers 4.26.0
- Pytorch 2.0.0+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
|