--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: gpt2-sweep results: [] --- # gpt2-sweep This model is a fine-tuned version of [gpt2-large](https://huggingface.co/gpt2-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0808 - Accuracy: 0.8556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.294477077303931e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.4827 | 0.19 | 1000 | 2.4565 | 0.8520 | | 2.6468 | 0.37 | 2000 | 2.3303 | 0.8530 | | 2.5106 | 0.56 | 3000 | 2.2487 | 0.8537 | | 2.0732 | 0.74 | 4000 | 2.2020 | 0.8541 | | 2.159 | 0.93 | 5000 | 2.1594 | 0.8545 | | 1.856 | 1.12 | 6000 | 2.1518 | 0.8548 | | 1.9138 | 1.3 | 7000 | 2.1261 | 0.8551 | | 1.8055 | 1.49 | 8000 | 2.1126 | 0.8552 | | 2.0385 | 1.67 | 9000 | 2.1008 | 0.8554 | | 1.9648 | 1.86 | 10000 | 2.0858 | 0.8555 | ### Framework versions - Transformers 4.26.0 - Pytorch 2.0.0+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2