tomaarsen HF staff commited on
Commit
1f4af49
1 Parent(s): ebe2942

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,558 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - loss:AdaptiveLayerLoss
10
+ - loss:CoSENTLoss
11
+ base_model: distilbert/distilbert-base-uncased
12
+ metrics:
13
+ - pearson_cosine
14
+ - spearman_cosine
15
+ - pearson_manhattan
16
+ - spearman_manhattan
17
+ - pearson_euclidean
18
+ - spearman_euclidean
19
+ - pearson_dot
20
+ - spearman_dot
21
+ - pearson_max
22
+ - spearman_max
23
+ widget:
24
+ - source_sentence: A man is speaking.
25
+ sentences:
26
+ - A man is talking.
27
+ - Breivik complains of 'ridicule'
28
+ - The dogs are chasing a cat.
29
+ - source_sentence: A plane is landing.
30
+ sentences:
31
+ - A animated airplane is landing.
32
+ - Three humans are walking a dog.
33
+ - Turkey's PM Warns Against Protests
34
+ - source_sentence: A plane in the sky.
35
+ sentences:
36
+ - Two airplanes in the sky.
37
+ - A guy is playing an instrument.
38
+ - Obama urges no new sanctions on Iran
39
+ - source_sentence: A boy is vacuuming.
40
+ sentences:
41
+ - A little boy is vacuuming the floor.
42
+ - Two dogs fighting in the snow.
43
+ - Gunmen 'kill 10 tourists' in Kashmir
44
+ - source_sentence: A woman is dancing.
45
+ sentences:
46
+ - Women are dancing.
47
+ - Two dogs fighting in the snow.
48
+ - A dog digs a hole in a yard.
49
+ pipeline_tag: sentence-similarity
50
+ co2_eq_emissions:
51
+ emissions: 5.048832905925286
52
+ energy_consumed: 0.012988955307472783
53
+ source: codecarbon
54
+ training_type: fine-tuning
55
+ on_cloud: false
56
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
57
+ ram_total_size: 31.777088165283203
58
+ hours_used: 0.069
59
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
60
+ model-index:
61
+ - name: SentenceTransformer based on distilbert/distilbert-base-uncased
62
+ results:
63
+ - task:
64
+ type: semantic-similarity
65
+ name: Semantic Similarity
66
+ dataset:
67
+ name: sts dev
68
+ type: sts-dev
69
+ metrics:
70
+ - type: pearson_cosine
71
+ value: 0.8652370775930345
72
+ name: Pearson Cosine
73
+ - type: spearman_cosine
74
+ value: 0.8727506004002163
75
+ name: Spearman Cosine
76
+ - type: pearson_manhattan
77
+ value: 0.8625714457714474
78
+ name: Pearson Manhattan
79
+ - type: spearman_manhattan
80
+ value: 0.8640763670277021
81
+ name: Spearman Manhattan
82
+ - type: pearson_euclidean
83
+ value: 0.8629790773940799
84
+ name: Pearson Euclidean
85
+ - type: spearman_euclidean
86
+ value: 0.8648628595939388
87
+ name: Spearman Euclidean
88
+ - type: pearson_dot
89
+ value: 0.7647366616229355
90
+ name: Pearson Dot
91
+ - type: spearman_dot
92
+ value: 0.7748666009336691
93
+ name: Spearman Dot
94
+ - type: pearson_max
95
+ value: 0.8652370775930345
96
+ name: Pearson Max
97
+ - type: spearman_max
98
+ value: 0.8727506004002163
99
+ name: Spearman Max
100
+ - task:
101
+ type: semantic-similarity
102
+ name: Semantic Similarity
103
+ dataset:
104
+ name: sts test
105
+ type: sts-test
106
+ metrics:
107
+ - type: pearson_cosine
108
+ value: 0.8353553575743735
109
+ name: Pearson Cosine
110
+ - type: spearman_cosine
111
+ value: 0.8456023773246713
112
+ name: Spearman Cosine
113
+ - type: pearson_manhattan
114
+ value: 0.8492310055929263
115
+ name: Pearson Manhattan
116
+ - type: spearman_manhattan
117
+ value: 0.8451007047564367
118
+ name: Spearman Manhattan
119
+ - type: pearson_euclidean
120
+ value: 0.8493640569080374
121
+ name: Pearson Euclidean
122
+ - type: spearman_euclidean
123
+ value: 0.8449411972438509
124
+ name: Spearman Euclidean
125
+ - type: pearson_dot
126
+ value: 0.6924412597499117
127
+ name: Pearson Dot
128
+ - type: spearman_dot
129
+ value: 0.6793562175238733
130
+ name: Spearman Dot
131
+ - type: pearson_max
132
+ value: 0.8493640569080374
133
+ name: Pearson Max
134
+ - type: spearman_max
135
+ value: 0.8456023773246713
136
+ name: Spearman Max
137
+ ---
138
+
139
+ # SentenceTransformer based on distilbert/distilbert-base-uncased
140
+
141
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
142
+
143
+ ## Model Details
144
+
145
+ ### Model Description
146
+ - **Model Type:** Sentence Transformer
147
+ - **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 6cdc0aad91f5ae2e6712e91bc7b65d1cf5c05411 -->
148
+ - **Maximum Sequence Length:** 512 tokens
149
+ - **Output Dimensionality:** 768 tokens
150
+ - **Similarity Function:** Cosine Similarity
151
+ - **Training Dataset:**
152
+ - [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
153
+ - **Language:** en
154
+ <!-- - **License:** Unknown -->
155
+
156
+ ### Model Sources
157
+
158
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
159
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
160
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
161
+
162
+ ### Full Model Architecture
163
+
164
+ ```
165
+ SentenceTransformer(
166
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
167
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
168
+ )
169
+ ```
170
+
171
+ ## Usage
172
+
173
+ ### Direct Usage (Sentence Transformers)
174
+
175
+ First install the Sentence Transformers library:
176
+
177
+ ```bash
178
+ pip install -U sentence-transformers
179
+ ```
180
+
181
+ Then you can load this model and run inference.
182
+ ```python
183
+ from sentence_transformers import SentenceTransformer
184
+
185
+ # Download from the 🤗 Hub
186
+ model = SentenceTransformer("sentence_transformers_model_id")
187
+ # Run inference
188
+ sentences = [
189
+ 'A woman is dancing.',
190
+ 'Women are dancing.',
191
+ 'Two dogs fighting in the snow.',
192
+ ]
193
+ embeddings = model.encode(sentences)
194
+ print(embeddings.shape)
195
+ # [3, 768]
196
+
197
+ # Get the similarity scores for the embeddings
198
+ similarities = model.similarity(embeddings)
199
+ print(similarities.shape)
200
+ # [3, 3]
201
+ ```
202
+
203
+ <!--
204
+ ### Direct Usage (Transformers)
205
+
206
+ <details><summary>Click to see the direct usage in Transformers</summary>
207
+
208
+ </details>
209
+ -->
210
+
211
+ <!--
212
+ ### Downstream Usage (Sentence Transformers)
213
+
214
+ You can finetune this model on your own dataset.
215
+
216
+ <details><summary>Click to expand</summary>
217
+
218
+ </details>
219
+ -->
220
+
221
+ <!--
222
+ ### Out-of-Scope Use
223
+
224
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
225
+ -->
226
+
227
+ ## Evaluation
228
+
229
+ ### Metrics
230
+
231
+ #### Semantic Similarity
232
+ * Dataset: `sts-dev`
233
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
234
+
235
+ | Metric | Value |
236
+ |:--------------------|:-----------|
237
+ | pearson_cosine | 0.8652 |
238
+ | **spearman_cosine** | **0.8728** |
239
+ | pearson_manhattan | 0.8626 |
240
+ | spearman_manhattan | 0.8641 |
241
+ | pearson_euclidean | 0.863 |
242
+ | spearman_euclidean | 0.8649 |
243
+ | pearson_dot | 0.7647 |
244
+ | spearman_dot | 0.7749 |
245
+ | pearson_max | 0.8652 |
246
+ | spearman_max | 0.8728 |
247
+
248
+ #### Semantic Similarity
249
+ * Dataset: `sts-test`
250
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
251
+
252
+ | Metric | Value |
253
+ |:--------------------|:-----------|
254
+ | pearson_cosine | 0.8354 |
255
+ | **spearman_cosine** | **0.8456** |
256
+ | pearson_manhattan | 0.8492 |
257
+ | spearman_manhattan | 0.8451 |
258
+ | pearson_euclidean | 0.8494 |
259
+ | spearman_euclidean | 0.8449 |
260
+ | pearson_dot | 0.6924 |
261
+ | spearman_dot | 0.6794 |
262
+ | pearson_max | 0.8494 |
263
+ | spearman_max | 0.8456 |
264
+
265
+ <!--
266
+ ## Bias, Risks and Limitations
267
+
268
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
269
+ -->
270
+
271
+ <!--
272
+ ### Recommendations
273
+
274
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
275
+ -->
276
+
277
+ ## Training Details
278
+
279
+ ### Training Dataset
280
+
281
+ #### sentence-transformers/stsb
282
+
283
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [d999f12](https://huggingface.co/datasets/sentence-transformers/stsb/tree/d999f12281623b0925506817d9bd85e88289218a)
284
+ * Size: 5,749 training samples
285
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
286
+ * Approximate statistics based on the first 1000 samples:
287
+ | | sentence1 | sentence2 | score |
288
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
289
+ | type | string | string | float |
290
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
291
+ * Samples:
292
+ | sentence1 | sentence2 | score |
293
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
294
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
295
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
296
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
297
+ * Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/losses.html#adaptivelayerloss) with these parameters:
298
+ ```json
299
+ {
300
+ "loss": "CoSENTLoss",
301
+ "n_layers_per_step": 1,
302
+ "last_layer_weight": 1.0,
303
+ "prior_layers_weight": 1.0,
304
+ "kl_div_weight": 1.0,
305
+ "kl_temperature": 0.3
306
+ }
307
+ ```
308
+
309
+ ### Evaluation Dataset
310
+
311
+ #### sentence-transformers/stsb
312
+
313
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [d999f12](https://huggingface.co/datasets/sentence-transformers/stsb/tree/d999f12281623b0925506817d9bd85e88289218a)
314
+ * Size: 1,500 evaluation samples
315
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
316
+ * Approximate statistics based on the first 1000 samples:
317
+ | | sentence1 | sentence2 | score |
318
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
319
+ | type | string | string | float |
320
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
321
+ * Samples:
322
+ | sentence1 | sentence2 | score |
323
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
324
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
325
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
326
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
327
+ * Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/losses.html#adaptivelayerloss) with these parameters:
328
+ ```json
329
+ {
330
+ "loss": "CoSENTLoss",
331
+ "n_layers_per_step": 1,
332
+ "last_layer_weight": 1.0,
333
+ "prior_layers_weight": 1.0,
334
+ "kl_div_weight": 1.0,
335
+ "kl_temperature": 0.3
336
+ }
337
+ ```
338
+
339
+ ### Training Hyperparameters
340
+ #### Non-Default Hyperparameters
341
+
342
+ - `eval_strategy`: steps
343
+ - `per_device_train_batch_size`: 16
344
+ - `per_device_eval_batch_size`: 16
345
+ - `num_train_epochs`: 4
346
+ - `warmup_ratio`: 0.1
347
+ - `fp16`: True
348
+
349
+ #### All Hyperparameters
350
+ <details><summary>Click to expand</summary>
351
+
352
+ - `overwrite_output_dir`: False
353
+ - `do_predict`: False
354
+ - `eval_strategy`: steps
355
+ - `prediction_loss_only`: False
356
+ - `per_device_train_batch_size`: 16
357
+ - `per_device_eval_batch_size`: 16
358
+ - `per_gpu_train_batch_size`: None
359
+ - `per_gpu_eval_batch_size`: None
360
+ - `gradient_accumulation_steps`: 1
361
+ - `eval_accumulation_steps`: None
362
+ - `learning_rate`: 5e-05
363
+ - `weight_decay`: 0.0
364
+ - `adam_beta1`: 0.9
365
+ - `adam_beta2`: 0.999
366
+ - `adam_epsilon`: 1e-08
367
+ - `max_grad_norm`: 1.0
368
+ - `num_train_epochs`: 4
369
+ - `max_steps`: -1
370
+ - `lr_scheduler_type`: linear
371
+ - `lr_scheduler_kwargs`: {}
372
+ - `warmup_ratio`: 0.1
373
+ - `warmup_steps`: 0
374
+ - `log_level`: passive
375
+ - `log_level_replica`: warning
376
+ - `log_on_each_node`: True
377
+ - `logging_nan_inf_filter`: True
378
+ - `save_safetensors`: True
379
+ - `save_on_each_node`: False
380
+ - `save_only_model`: False
381
+ - `no_cuda`: False
382
+ - `use_cpu`: False
383
+ - `use_mps_device`: False
384
+ - `seed`: 42
385
+ - `data_seed`: None
386
+ - `jit_mode_eval`: False
387
+ - `use_ipex`: False
388
+ - `bf16`: False
389
+ - `fp16`: True
390
+ - `fp16_opt_level`: O1
391
+ - `half_precision_backend`: auto
392
+ - `bf16_full_eval`: False
393
+ - `fp16_full_eval`: False
394
+ - `tf32`: None
395
+ - `local_rank`: 0
396
+ - `ddp_backend`: None
397
+ - `tpu_num_cores`: None
398
+ - `tpu_metrics_debug`: False
399
+ - `debug`: []
400
+ - `dataloader_drop_last`: False
401
+ - `dataloader_num_workers`: 0
402
+ - `dataloader_prefetch_factor`: None
403
+ - `past_index`: -1
404
+ - `disable_tqdm`: False
405
+ - `remove_unused_columns`: True
406
+ - `label_names`: None
407
+ - `load_best_model_at_end`: False
408
+ - `ignore_data_skip`: False
409
+ - `fsdp`: []
410
+ - `fsdp_min_num_params`: 0
411
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
412
+ - `fsdp_transformer_layer_cls_to_wrap`: None
413
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
414
+ - `deepspeed`: None
415
+ - `label_smoothing_factor`: 0.0
416
+ - `optim`: adamw_torch
417
+ - `optim_args`: None
418
+ - `adafactor`: False
419
+ - `group_by_length`: False
420
+ - `length_column_name`: length
421
+ - `ddp_find_unused_parameters`: None
422
+ - `ddp_bucket_cap_mb`: None
423
+ - `ddp_broadcast_buffers`: None
424
+ - `dataloader_pin_memory`: True
425
+ - `dataloader_persistent_workers`: False
426
+ - `skip_memory_metrics`: True
427
+ - `use_legacy_prediction_loop`: False
428
+ - `push_to_hub`: False
429
+ - `resume_from_checkpoint`: None
430
+ - `hub_model_id`: None
431
+ - `hub_strategy`: every_save
432
+ - `hub_private_repo`: False
433
+ - `hub_always_push`: False
434
+ - `gradient_checkpointing`: False
435
+ - `gradient_checkpointing_kwargs`: None
436
+ - `include_inputs_for_metrics`: False
437
+ - `eval_do_concat_batches`: True
438
+ - `fp16_backend`: auto
439
+ - `push_to_hub_model_id`: None
440
+ - `push_to_hub_organization`: None
441
+ - `mp_parameters`:
442
+ - `auto_find_batch_size`: False
443
+ - `full_determinism`: False
444
+ - `torchdynamo`: None
445
+ - `ray_scope`: last
446
+ - `ddp_timeout`: 1800
447
+ - `torch_compile`: False
448
+ - `torch_compile_backend`: None
449
+ - `torch_compile_mode`: None
450
+ - `dispatch_batches`: None
451
+ - `split_batches`: None
452
+ - `include_tokens_per_second`: False
453
+ - `include_num_input_tokens_seen`: False
454
+ - `neftune_noise_alpha`: None
455
+ - `optim_target_modules`: None
456
+ - `batch_sampler`: batch_sampler
457
+ - `multi_dataset_batch_sampler`: proportional
458
+
459
+ </details>
460
+
461
+ ### Training Logs
462
+ | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
463
+ |:------:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:|
464
+ | 0.2778 | 100 | 6.6822 | 6.2966 | 0.8433 | - |
465
+ | 0.5556 | 200 | 6.6943 | 6.6898 | 0.8450 | - |
466
+ | 0.8333 | 300 | 6.4234 | 6.7096 | 0.8555 | - |
467
+ | 1.1111 | 400 | 6.1543 | 6.6157 | 0.8590 | - |
468
+ | 1.3889 | 500 | 6.3869 | 6.4068 | 0.8596 | - |
469
+ | 1.6667 | 600 | 6.2925 | 6.4920 | 0.8597 | - |
470
+ | 1.9444 | 700 | 6.2973 | 6.3890 | 0.8658 | - |
471
+ | 2.2222 | 800 | 6.0865 | 6.8754 | 0.8683 | - |
472
+ | 2.5 | 900 | 5.6631 | 6.7812 | 0.8674 | - |
473
+ | 2.7778 | 1000 | 5.9954 | 6.8150 | 0.8684 | - |
474
+ | 3.0556 | 1100 | 5.6617 | 6.8462 | 0.8693 | - |
475
+ | 3.3333 | 1200 | 5.3529 | 7.2448 | 0.8702 | - |
476
+ | 3.6111 | 1300 | 5.3467 | 7.1615 | 0.8723 | - |
477
+ | 3.8889 | 1400 | 5.6536 | 7.3408 | 0.8728 | - |
478
+ | 4.0 | 1440 | - | - | - | 0.8456 |
479
+
480
+
481
+ ### Environmental Impact
482
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
483
+ - **Energy Consumed**: 0.013 kWh
484
+ - **Carbon Emitted**: 0.005 kg of CO2
485
+ - **Hours Used**: 0.069 hours
486
+
487
+ ### Training Hardware
488
+ - **On Cloud**: No
489
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
490
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
491
+ - **RAM Size**: 31.78 GB
492
+
493
+ ### Framework Versions
494
+ - Python: 3.11.6
495
+ - Sentence Transformers: 3.0.0.dev0
496
+ - Transformers: 4.41.0.dev0
497
+ - PyTorch: 2.3.0+cu121
498
+ - Accelerate: 0.26.1
499
+ - Datasets: 2.18.0
500
+ - Tokenizers: 0.19.1
501
+
502
+ ## Citation
503
+
504
+ ### BibTeX
505
+
506
+ #### Sentence Transformers
507
+ ```bibtex
508
+ @inproceedings{reimers-2019-sentence-bert,
509
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
510
+ author = "Reimers, Nils and Gurevych, Iryna",
511
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
512
+ month = "11",
513
+ year = "2019",
514
+ publisher = "Association for Computational Linguistics",
515
+ url = "https://arxiv.org/abs/1908.10084",
516
+ }
517
+ ```
518
+
519
+ #### AdaptiveLayerLoss
520
+ ```bibtex
521
+ @misc{li20242d,
522
+ title={2D Matryoshka Sentence Embeddings},
523
+ author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
524
+ year={2024},
525
+ eprint={2402.14776},
526
+ archivePrefix={arXiv},
527
+ primaryClass={cs.CL}
528
+ }
529
+ ```
530
+
531
+ #### CoSENTLoss
532
+ ```bibtex
533
+ @online{kexuefm-8847,
534
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
535
+ author={Su Jianlin},
536
+ year={2022},
537
+ month={Jan},
538
+ url={https://kexue.fm/archives/8847},
539
+ }
540
+ ```
541
+
542
+ <!--
543
+ ## Glossary
544
+
545
+ *Clearly define terms in order to be accessible across audiences.*
546
+ -->
547
+
548
+ <!--
549
+ ## Model Card Authors
550
+
551
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
552
+ -->
553
+
554
+ <!--
555
+ ## Model Card Contact
556
+
557
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
558
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "output/adaptive_layer_sts_distilbert-base-uncased-2024-04-25_17-28-18/final",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.0.dev0",
23
+ "vocab_size": 30522
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0.dev0",
4
+ "transformers": "4.41.0.dev0",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f8eac6c58507a0d2d74b2e5d8274b3da302f3caf67d192a2c9265732c0a62bc
3
+ size 265462608
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "DistilBertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff