Add SetFit ABSA model
Browse files- README.md +14 -10
- config_setfit.json +2 -2
README.md
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
---
|
|
|
|
|
2 |
library_name: setfit
|
3 |
tags:
|
4 |
- setfit
|
@@ -6,6 +8,8 @@ tags:
|
|
6 |
- sentence-transformers
|
7 |
- text-classification
|
8 |
- generated_from_setfit_trainer
|
|
|
|
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
widget:
|
@@ -20,17 +24,17 @@ widget:
|
|
20 |
pipeline_tag: text-classification
|
21 |
inference: false
|
22 |
co2_eq_emissions:
|
23 |
-
emissions: 12.
|
24 |
source: codecarbon
|
25 |
training_type: fine-tuning
|
26 |
on_cloud: false
|
27 |
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
28 |
ram_total_size: 31.777088165283203
|
29 |
-
hours_used: 0.
|
30 |
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
31 |
base_model: BAAI/bge-small-en-v1.5
|
32 |
model-index:
|
33 |
-
- name: SetFit Aspect Model with BAAI/bge-small-en-v1.5
|
34 |
results:
|
35 |
- task:
|
36 |
type: text-classification
|
@@ -38,16 +42,16 @@ model-index:
|
|
38 |
dataset:
|
39 |
name: SemEval 2014 Task 4 (Restaurants)
|
40 |
type: tomaarsen/setfit-absa-semeval-restaurants
|
41 |
-
split:
|
42 |
metrics:
|
43 |
- type: accuracy
|
44 |
value: 0.7871243108660857
|
45 |
name: Accuracy
|
46 |
---
|
47 |
|
48 |
-
# SetFit Aspect Model with BAAI/bge-small-en-v1.5
|
49 |
|
50 |
-
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
|
51 |
|
52 |
The model has been trained using an efficient few-shot learning technique that involves:
|
53 |
|
@@ -70,9 +74,9 @@ This model was trained within the context of a larger system for ABSA, which loo
|
|
70 |
- **SetFitABSA Polarity Model:** [tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity](https://huggingface.co/tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity)
|
71 |
- **Maximum Sequence Length:** 512 tokens
|
72 |
- **Number of Classes:** 2 classes
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
|
77 |
### Model Sources
|
78 |
|
@@ -194,7 +198,7 @@ preds = model("The food was great, but the venue is just way too busy.")
|
|
194 |
### Environmental Impact
|
195 |
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
196 |
- **Carbon Emitted**: 0.012 kg of CO2
|
197 |
-
- **Hours Used**: 0.
|
198 |
|
199 |
### Training Hardware
|
200 |
- **On Cloud**: No
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
+
license: apache-2.0
|
4 |
library_name: setfit
|
5 |
tags:
|
6 |
- setfit
|
|
|
8 |
- sentence-transformers
|
9 |
- text-classification
|
10 |
- generated_from_setfit_trainer
|
11 |
+
datasets:
|
12 |
+
- tomaarsen/setfit-absa-semeval-restaurants
|
13 |
metrics:
|
14 |
- accuracy
|
15 |
widget:
|
|
|
24 |
pipeline_tag: text-classification
|
25 |
inference: false
|
26 |
co2_eq_emissions:
|
27 |
+
emissions: 12.371061343498498
|
28 |
source: codecarbon
|
29 |
training_type: fine-tuning
|
30 |
on_cloud: false
|
31 |
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
32 |
ram_total_size: 31.777088165283203
|
33 |
+
hours_used: 0.206
|
34 |
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
35 |
base_model: BAAI/bge-small-en-v1.5
|
36 |
model-index:
|
37 |
+
- name: SetFit Aspect Model with BAAI/bge-small-en-v1.5 on SemEval 2014 Task 4 (Restaurants)
|
38 |
results:
|
39 |
- task:
|
40 |
type: text-classification
|
|
|
42 |
dataset:
|
43 |
name: SemEval 2014 Task 4 (Restaurants)
|
44 |
type: tomaarsen/setfit-absa-semeval-restaurants
|
45 |
+
split: test
|
46 |
metrics:
|
47 |
- type: accuracy
|
48 |
value: 0.7871243108660857
|
49 |
name: Accuracy
|
50 |
---
|
51 |
|
52 |
+
# SetFit Aspect Model with BAAI/bge-small-en-v1.5 on SemEval 2014 Task 4 (Restaurants)
|
53 |
|
54 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [SemEval 2014 Task 4 (Restaurants)](https://huggingface.co/datasets/tomaarsen/setfit-absa-semeval-restaurants) dataset that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
|
55 |
|
56 |
The model has been trained using an efficient few-shot learning technique that involves:
|
57 |
|
|
|
74 |
- **SetFitABSA Polarity Model:** [tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity](https://huggingface.co/tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity)
|
75 |
- **Maximum Sequence Length:** 512 tokens
|
76 |
- **Number of Classes:** 2 classes
|
77 |
+
- **Training Dataset:** [SemEval 2014 Task 4 (Restaurants)](https://huggingface.co/datasets/tomaarsen/setfit-absa-semeval-restaurants)
|
78 |
+
- **Language:** en
|
79 |
+
- **License:** apache-2.0
|
80 |
|
81 |
### Model Sources
|
82 |
|
|
|
198 |
### Environmental Impact
|
199 |
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
200 |
- **Carbon Emitted**: 0.012 kg of CO2
|
201 |
+
- **Hours Used**: 0.206 hours
|
202 |
|
203 |
### Training Hardware
|
204 |
- **On Cloud**: No
|
config_setfit.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
|
|
2 |
"labels": [
|
3 |
"no aspect",
|
4 |
"aspect"
|
5 |
],
|
6 |
-
"span_context": 0
|
7 |
-
"normalize_embeddings": false
|
8 |
}
|
|
|
1 |
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
"labels": [
|
4 |
"no aspect",
|
5 |
"aspect"
|
6 |
],
|
7 |
+
"span_context": 0
|
|
|
8 |
}
|