tomaarsen HF staff commited on
Commit
2c2fb0c
1 Parent(s): 0de9e75

Add SetFit ABSA model

Browse files
Files changed (2) hide show
  1. README.md +14 -10
  2. config_setfit.json +2 -2
README.md CHANGED
@@ -1,4 +1,6 @@
1
  ---
 
 
2
  library_name: setfit
3
  tags:
4
  - setfit
@@ -6,6 +8,8 @@ tags:
6
  - sentence-transformers
7
  - text-classification
8
  - generated_from_setfit_trainer
 
 
9
  metrics:
10
  - accuracy
11
  widget:
@@ -20,17 +24,17 @@ widget:
20
  pipeline_tag: text-classification
21
  inference: false
22
  co2_eq_emissions:
23
- emissions: 12.403245052695876
24
  source: codecarbon
25
  training_type: fine-tuning
26
  on_cloud: false
27
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
28
  ram_total_size: 31.777088165283203
29
- hours_used: 0.158
30
  hardware_used: 1 x NVIDIA GeForce RTX 3090
31
  base_model: BAAI/bge-small-en-v1.5
32
  model-index:
33
- - name: SetFit Aspect Model with BAAI/bge-small-en-v1.5
34
  results:
35
  - task:
36
  type: text-classification
@@ -38,16 +42,16 @@ model-index:
38
  dataset:
39
  name: SemEval 2014 Task 4 (Restaurants)
40
  type: tomaarsen/setfit-absa-semeval-restaurants
41
- split: train[384:]
42
  metrics:
43
  - type: accuracy
44
  value: 0.7871243108660857
45
  name: Accuracy
46
  ---
47
 
48
- # SetFit Aspect Model with BAAI/bge-small-en-v1.5
49
 
50
- This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
51
 
52
  The model has been trained using an efficient few-shot learning technique that involves:
53
 
@@ -70,9 +74,9 @@ This model was trained within the context of a larger system for ABSA, which loo
70
  - **SetFitABSA Polarity Model:** [tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity](https://huggingface.co/tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity)
71
  - **Maximum Sequence Length:** 512 tokens
72
  - **Number of Classes:** 2 classes
73
- <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
74
- <!-- - **Language:** Unknown -->
75
- <!-- - **License:** Unknown -->
76
 
77
  ### Model Sources
78
 
@@ -194,7 +198,7 @@ preds = model("The food was great, but the venue is just way too busy.")
194
  ### Environmental Impact
195
  Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
196
  - **Carbon Emitted**: 0.012 kg of CO2
197
- - **Hours Used**: 0.158 hours
198
 
199
  ### Training Hardware
200
  - **On Cloud**: No
 
1
  ---
2
+ language: en
3
+ license: apache-2.0
4
  library_name: setfit
5
  tags:
6
  - setfit
 
8
  - sentence-transformers
9
  - text-classification
10
  - generated_from_setfit_trainer
11
+ datasets:
12
+ - tomaarsen/setfit-absa-semeval-restaurants
13
  metrics:
14
  - accuracy
15
  widget:
 
24
  pipeline_tag: text-classification
25
  inference: false
26
  co2_eq_emissions:
27
+ emissions: 12.371061343498498
28
  source: codecarbon
29
  training_type: fine-tuning
30
  on_cloud: false
31
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
32
  ram_total_size: 31.777088165283203
33
+ hours_used: 0.206
34
  hardware_used: 1 x NVIDIA GeForce RTX 3090
35
  base_model: BAAI/bge-small-en-v1.5
36
  model-index:
37
+ - name: SetFit Aspect Model with BAAI/bge-small-en-v1.5 on SemEval 2014 Task 4 (Restaurants)
38
  results:
39
  - task:
40
  type: text-classification
 
42
  dataset:
43
  name: SemEval 2014 Task 4 (Restaurants)
44
  type: tomaarsen/setfit-absa-semeval-restaurants
45
+ split: test
46
  metrics:
47
  - type: accuracy
48
  value: 0.7871243108660857
49
  name: Accuracy
50
  ---
51
 
52
+ # SetFit Aspect Model with BAAI/bge-small-en-v1.5 on SemEval 2014 Task 4 (Restaurants)
53
 
54
+ This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [SemEval 2014 Task 4 (Restaurants)](https://huggingface.co/datasets/tomaarsen/setfit-absa-semeval-restaurants) dataset that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
55
 
56
  The model has been trained using an efficient few-shot learning technique that involves:
57
 
 
74
  - **SetFitABSA Polarity Model:** [tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity](https://huggingface.co/tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity)
75
  - **Maximum Sequence Length:** 512 tokens
76
  - **Number of Classes:** 2 classes
77
+ - **Training Dataset:** [SemEval 2014 Task 4 (Restaurants)](https://huggingface.co/datasets/tomaarsen/setfit-absa-semeval-restaurants)
78
+ - **Language:** en
79
+ - **License:** apache-2.0
80
 
81
  ### Model Sources
82
 
 
198
  ### Environmental Impact
199
  Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
200
  - **Carbon Emitted**: 0.012 kg of CO2
201
+ - **Hours Used**: 0.206 hours
202
 
203
  ### Training Hardware
204
  - **On Cloud**: No
config_setfit.json CHANGED
@@ -1,8 +1,8 @@
1
  {
 
2
  "labels": [
3
  "no aspect",
4
  "aspect"
5
  ],
6
- "span_context": 0,
7
- "normalize_embeddings": false
8
  }
 
1
  {
2
+ "normalize_embeddings": false,
3
  "labels": [
4
  "no aspect",
5
  "aspect"
6
  ],
7
+ "span_context": 0
 
8
  }