--- library_name: setfit tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: people:Regardless of whether there are two people or two hundred people ahead of you the hostess will take your name and tell you Five minutes. - text: dish:This dish is my favorite and I always get it when I go there and never get tired of it. - text: food:Get your food to go, find a bench, and kick back with a plate of dumplings. - text: crabmeat lasagna:You must have the crabmeat lasagna which is out of this world and the chocolate bread pudding for dessert. - text: plate:Get your food to go, find a bench, and kick back with a plate of dumplings. pipeline_tag: text-classification inference: false co2_eq_emissions: emissions: 12.403245052695876 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.158 hardware_used: 1 x NVIDIA GeForce RTX 3090 base_model: BAAI/bge-small-en-v1.5 model-index: - name: SetFit Aspect Model with BAAI/bge-small-en-v1.5 results: - task: type: text-classification name: Text Classification dataset: name: SemEval 2014 Task 4 (Restaurants) type: tomaarsen/setfit-absa-semeval-restaurants split: train[384:] metrics: - type: accuracy value: 0.7871243108660857 name: Accuracy --- # SetFit Aspect Model with BAAI/bge-small-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. **Use this SetFit model to filter these possible aspect span candidates.** 3. Use a SetFit model to classify the filtered aspect span candidates. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **SetFitABSA Aspect Model:** [tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-aspect](https://huggingface.co/tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-aspect) - **SetFitABSA Polarity Model:** [tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity](https://huggingface.co/tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity) - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:----------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | aspect | | | no aspect | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.7871 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import AbsaModel # Download from the 🤗 Hub model = AbsaModel.from_pretrained( "tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-aspect", "tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity", ) # Run inference preds = model("The food was great, but the venue is just way too busy.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 4 | 19.3034 | 45 | | Label | Training Sample Count | |:----------|:----------------------| | no aspect | 231 | | aspect | 204 | ### Training Hyperparameters - batch_size: (256, 256) - num_epochs: (5, 5) - max_steps: 5000 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: True - warmup_proportion: 0.1 - seed: 42 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:----------:|:-------:|:-------------:|:---------------:| | 0.0027 | 1 | 0.2574 | - | | 0.1340 | 50 | 0.2561 | - | | 0.2681 | 100 | 0.251 | 0.2543 | | 0.4021 | 150 | 0.2451 | - | | 0.5362 | 200 | 0.242 | 0.2506 | | 0.6702 | 250 | 0.2239 | - | | **0.8043** | **300** | **0.0473** | **0.2499** | | 0.9383 | 350 | 0.0098 | - | | 1.0724 | 400 | 0.0097 | 0.2734 | | 1.2064 | 450 | 0.0047 | - | | 1.3405 | 500 | 0.0071 | 0.2834 | | 1.4745 | 550 | 0.0089 | - | | 1.6086 | 600 | 0.005 | 0.273 | | 1.7426 | 650 | 0.0041 | - | | 1.8767 | 700 | 0.0042 | 0.2942 | | 2.0107 | 750 | 0.0053 | - | | 2.1448 | 800 | 0.0073 | 0.2898 | * The bold row denotes the saved checkpoint. ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Carbon Emitted**: 0.012 kg of CO2 - **Hours Used**: 0.158 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.9.16 - SetFit: 1.0.0.dev0 - Sentence Transformers: 2.2.2 - Transformers: 4.29.0 - PyTorch: 1.13.1+cu117 - Datasets: 2.15.0 - Tokenizers: 0.13.3 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```