tomaarsen HF staff commited on
Commit
8ddcb0d
1 Parent(s): 88d704a

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: setfit
6
+ tags:
7
+ - setfit
8
+ - sentence-transformers
9
+ - text-classification
10
+ - generated_from_setfit_trainer
11
+ datasets:
12
+ - sst2
13
+ metrics:
14
+ - precision
15
+ - recall
16
+ - f1
17
+ widget:
18
+ - text: 'this is a story of two misfits who do n''t stand a chance alone , but together
19
+ they are magnificent . '
20
+ - text: 'it does n''t believe in itself , it has no sense of humor ... it ''s just
21
+ plain bored . '
22
+ - text: 'the band ''s courage in the face of official repression is inspiring , especially
23
+ for aging hippies ( this one included ) . '
24
+ - text: 'a fast , funny , highly enjoyable movie . '
25
+ - text: 'the movie achieves as great an impact by keeping these thoughts hidden as
26
+ ... ( quills ) did by showing them . '
27
+ pipeline_tag: text-classification
28
+ co2_eq_emissions:
29
+ emissions: 2.6114980282637004
30
+ source: codecarbon
31
+ training_type: fine-tuning
32
+ on_cloud: false
33
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
34
+ ram_total_size: 31.777088165283203
35
+ hours_used: 0.03
36
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
37
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
38
+ model-index:
39
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 on sst2
40
+ results:
41
+ - task:
42
+ type: text-classification
43
+ name: Text Classification
44
+ dataset:
45
+ name: Unknown
46
+ type: sst2
47
+ split: test
48
+ metrics:
49
+ - type: accuracy
50
+ value: 0.8588082901554405
51
+ name: Accuracy
52
+ ---
53
+
54
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 on sst2
55
+
56
+ This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [sst2](https://huggingface.co/datasets/sst2) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. For classification, it uses a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance.
57
+
58
+ The model has been trained using an efficient few-shot learning technique that involves:
59
+
60
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
61
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
62
+
63
+ ## Model Details
64
+
65
+ ### Model Description
66
+ - **Model Type:** SetFit
67
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
68
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance.
69
+ - **Maximum Sequence Length:** 512 tokens
70
+ - **Number of Classes:** 2 classes
71
+ - **Training Dataset:** [sst2](https://huggingface.co/datasets/sst2)
72
+ - **Language:** en
73
+ - **License:** apache-2.0
74
+
75
+ ### Model Sources
76
+
77
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
78
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
79
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
80
+
81
+ ### Model Labels
82
+ | Label | Examples |
83
+ |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
84
+ | 0 | <ul><li>'stale and uninspired . '</li><li>"the film 's considered approach to its subject matter is too calm and thoughtful for agitprop , and the thinness of its characterizations makes it a failure as straight drama . ' "</li><li>"that their charm does n't do a load of good "</li></ul> |
85
+ | 1 | <ul><li>"broomfield is energized by volletta wallace 's maternal fury , her fearlessness "</li><li>'flawless '</li><li>'insightfully written , delicately performed '</li></ul> |
86
+
87
+ ## Evaluation
88
+
89
+ ### Metrics
90
+ | Label | Accuracy |
91
+ |:--------|:---------|
92
+ | **all** | 0.8588 |
93
+
94
+ ## Uses
95
+
96
+ ### Direct Use for Inference
97
+
98
+ First install the SetFit library:
99
+
100
+ ```bash
101
+ pip install setfit
102
+ ```
103
+
104
+ Then you can load this model and run inference.
105
+
106
+ ```python
107
+ from setfit import SetFitModel
108
+
109
+ # Download from 🤗 Hub
110
+ model = SetFitModel.from_pretrained("tomaarsen/setfit-paraphrase-mpnet-base-v2-sst2-8-shot")
111
+ # Run inference
112
+ preds = model("a fast , funny , highly enjoyable movie . ")
113
+ ```
114
+ <!--
115
+ ### Downstream Use
116
+
117
+ *List how someone could finetune this model on their own dataset.*
118
+ -->
119
+
120
+ <!--
121
+ ### Out-of-Scope Use
122
+
123
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
124
+ -->
125
+
126
+ <!--
127
+ ## Bias, Risks and Limitations
128
+
129
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
130
+ -->
131
+
132
+ <!--
133
+ ### Recommendations
134
+
135
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
136
+ -->
137
+
138
+ ## Training Details
139
+
140
+ ### Training Set Metrics
141
+ | Training set | Min | Median | Max |
142
+ |:-------------|:----|:--------|:----|
143
+ | Word count | 2 | 11.4375 | 33 |
144
+
145
+ | Label | Training Sample Count |
146
+ |:---------|:----------------------|
147
+ | negative | 8 |
148
+ | positive | 8 |
149
+
150
+ ### Training Hyperparameters
151
+ - batch_size: (16, 16)
152
+ - num_epochs: (10, 10)
153
+ - max_steps: -1
154
+ - sampling_strategy: oversampling
155
+ - body_learning_rate: (2e-05, 1e-05)
156
+ - head_learning_rate: 0.01
157
+ - loss: CosineSimilarityLoss
158
+ - distance_metric: cosine_distance
159
+ - margin: 0.25
160
+ - end_to_end: False
161
+ - use_amp: False
162
+ - warmup_proportion: 0.1
163
+ - seed: 42
164
+ - load_best_model_at_end: True
165
+
166
+ ### Training Results
167
+ | Epoch | Step | Training Loss | Validation Loss |
168
+ |:----------:|:------:|:-------------:|:---------------:|
169
+ | 0.1111 | 1 | 0.2126 | - |
170
+ | 1.1111 | 10 | 0.1604 | - |
171
+ | **2.2222** | **20** | **0.0224** | **0.1761** |
172
+ | 3.3333 | 30 | 0.0039 | - |
173
+ | 4.4444 | 40 | 0.0029 | 0.1935 |
174
+ | 5.5556 | 50 | 0.0026 | - |
175
+ | 6.6667 | 60 | 0.0008 | 0.1944 |
176
+ | 7.7778 | 70 | 0.0009 | - |
177
+ | 8.8889 | 80 | 0.0027 | 0.1941 |
178
+ | 10.0 | 90 | 0.0004 | - |
179
+
180
+ * The bold row denotes the saved checkpoint.
181
+ ### Environmental Impact
182
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
183
+ - **Carbon Emitted**: 0.003 kg of CO2
184
+ - **Hours Used**: 0.03 hours
185
+
186
+ ### Training Hardware
187
+ - **On Cloud**: No
188
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
189
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
190
+ - **RAM Size**: 31.78 GB
191
+
192
+ ### Framework Versions
193
+ - Python: 3.9.16
194
+ - SetFit: 1.0.0.dev0
195
+ - Sentence Transformers: 2.2.2
196
+ - Transformers: 4.29.0
197
+ - PyTorch: 1.13.1+cu117
198
+ - Datasets: 2.15.0
199
+ - Tokenizers: 0.13.3
200
+
201
+ ## Citation
202
+
203
+ ### BibTeX
204
+ ```bibtex
205
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
206
+ doi = {10.48550/ARXIV.2209.11055},
207
+ url = {https://arxiv.org/abs/2209.11055},
208
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
209
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
210
+ title = {Efficient Few-Shot Learning Without Prompts},
211
+ publisher = {arXiv},
212
+ year = {2022},
213
+ copyright = {Creative Commons Attribution 4.0 International}
214
+ }
215
+ ```
216
+
217
+ <!--
218
+ ## Glossary
219
+
220
+ *Clearly define terms in order to be accessible across audiences.*
221
+ -->
222
+
223
+ <!--
224
+ ## Model Card Authors
225
+
226
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
227
+ -->
228
+
229
+ <!--
230
+ ## Model Card Contact
231
+
232
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
233
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoints\\step_20\\",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.29.0",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "negative",
4
+ "positive"
5
+ ],
6
+ "normalize_embeddings": false
7
+ }
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a2b4b17b5e6b45edc289bf04cf1884158bc527d877bef5fcf2f7ba7b646f41b
3
+ size 6959
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ca435aa80c4000fb79462d03c61f95a83d8818f61fa319c3abf0fbb951c80db
3
+ size 438016493
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "[UNK]"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "__type": "AddedToken",
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "clean_up_tokenization_spaces": true,
11
+ "cls_token": {
12
+ "__type": "AddedToken",
13
+ "content": "<s>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false
18
+ },
19
+ "do_basic_tokenize": true,
20
+ "do_lower_case": true,
21
+ "eos_token": {
22
+ "__type": "AddedToken",
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false
28
+ },
29
+ "mask_token": {
30
+ "__type": "AddedToken",
31
+ "content": "<mask>",
32
+ "lstrip": true,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "model_max_length": 512,
38
+ "never_split": null,
39
+ "pad_token": {
40
+ "__type": "AddedToken",
41
+ "content": "<pad>",
42
+ "lstrip": false,
43
+ "normalized": true,
44
+ "rstrip": false,
45
+ "single_word": false
46
+ },
47
+ "sep_token": {
48
+ "__type": "AddedToken",
49
+ "content": "</s>",
50
+ "lstrip": false,
51
+ "normalized": true,
52
+ "rstrip": false,
53
+ "single_word": false
54
+ },
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": {
59
+ "__type": "AddedToken",
60
+ "content": "[UNK]",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false
65
+ }
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff