Upload model
Browse files- README.md +236 -0
- added_tokens.json +4 -0
- config.json +135 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +16 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- tl
|
4 |
+
license: gpl-3.0
|
5 |
+
library_name: span-marker
|
6 |
+
tags:
|
7 |
+
- span-marker
|
8 |
+
- token-classification
|
9 |
+
- ner
|
10 |
+
- named-entity-recognition
|
11 |
+
- generated_from_span_marker_trainer
|
12 |
+
datasets:
|
13 |
+
- ljvmiranda921/tlunified-ner
|
14 |
+
metrics:
|
15 |
+
- precision
|
16 |
+
- recall
|
17 |
+
- f1
|
18 |
+
widget:
|
19 |
+
- text: MANILA - Binalewala ng Philippine National Police (PNP) nitong Sabado ang
|
20 |
+
posibleng paglulunsad ng tinatawag na " sympathy attacks " ng Moro National Liberation
|
21 |
+
Front (MNLF) at Abu Sayyaf matapos arestuhin si Indanan, Sulu Mayor Alvarez Isnaji.
|
22 |
+
- text: Pinatawan din ng apat na buwang suspensyon si Herma Gonzales - Escudero, chief
|
23 |
+
revenue officer III ng BIR - Cotabato City, dahil sa kasong dishonesty at limang
|
24 |
+
kaso ng perjury sa Municipal Trial Court ng Cotabato City . Bunga ito ng kanyang
|
25 |
+
kabiguan na ideklara sa kanyang SALN noong 2002 - 2004 ang 200 metro kwadradong
|
26 |
+
lote sa South Cotabato at Toyota Revo noong 2001 SALN at undervaluation ng kanyang
|
27 |
+
mga ari - arian sa lalawigan noong 2000 - 2004 SALN.
|
28 |
+
- text: Sa tila pagpapabaya sa mga magsasaka, sinabi ni Escudero na hindi mangyayari
|
29 |
+
ang pangarap ng Department of Agriculture (DA) na maging self - sufficient ang
|
30 |
+
Pilipinas sa bigas.
|
31 |
+
- text: MANILA - Tiniyak ng pinuno ng Government Service Insurance System (GSIS) na
|
32 |
+
tatapatan nito ang pro - Meralco advertisement ni Judy Ann Santos upang isulong
|
33 |
+
ang kanyang posisyon na dapat ibaba ang singil sa kuryente.
|
34 |
+
- text: Idinagdag ni South Cotabato Rep Darlene Antonino - Custodio, na illegal na
|
35 |
+
ipagpaliban ang halalan sa ARMM kung ang gagamitin lamang basehan ay ang ipapasang
|
36 |
+
panukala ng Kongreso.
|
37 |
+
pipeline_tag: token-classification
|
38 |
+
co2_eq_emissions:
|
39 |
+
emissions: 22.090476722294312
|
40 |
+
source: codecarbon
|
41 |
+
training_type: fine-tuning
|
42 |
+
on_cloud: false
|
43 |
+
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
44 |
+
ram_total_size: 31.777088165283203
|
45 |
+
hours_used: 0.238
|
46 |
+
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
47 |
+
base_model: bert-base-multilingual-cased
|
48 |
+
model-index:
|
49 |
+
- name: SpanMarker with bert-base-multilingual-cased on TLUnified
|
50 |
+
results:
|
51 |
+
- task:
|
52 |
+
type: token-classification
|
53 |
+
name: Named Entity Recognition
|
54 |
+
dataset:
|
55 |
+
name: TLUnified
|
56 |
+
type: ljvmiranda921/tlunified-ner
|
57 |
+
split: test
|
58 |
+
metrics:
|
59 |
+
- type: f1
|
60 |
+
value: 0.8886810102899907
|
61 |
+
name: F1
|
62 |
+
- type: precision
|
63 |
+
value: 0.8736971183323115
|
64 |
+
name: Precision
|
65 |
+
- type: recall
|
66 |
+
value: 0.9041878172588832
|
67 |
+
name: Recall
|
68 |
+
---
|
69 |
+
|
70 |
+
# SpanMarker with bert-base-multilingual-cased on TLUnified
|
71 |
+
|
72 |
+
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [TLUnified](https://huggingface.co/datasets/ljvmiranda921/tlunified-ner) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) as the underlying encoder.
|
73 |
+
|
74 |
+
## Model Details
|
75 |
+
|
76 |
+
### Model Description
|
77 |
+
- **Model Type:** SpanMarker
|
78 |
+
- **Encoder:** [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased)
|
79 |
+
- **Maximum Sequence Length:** 256 tokens
|
80 |
+
- **Maximum Entity Length:** 8 words
|
81 |
+
- **Training Dataset:** [TLUnified](https://huggingface.co/datasets/ljvmiranda921/tlunified-ner)
|
82 |
+
- **Language:** tl
|
83 |
+
- **License:** gpl-3.0
|
84 |
+
|
85 |
+
### Model Sources
|
86 |
+
|
87 |
+
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
|
88 |
+
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
|
89 |
+
|
90 |
+
### Model Labels
|
91 |
+
| Label | Examples |
|
92 |
+
|:------|:----------------------------------------------------------------------------------------------------|
|
93 |
+
| LOC | "Israel", "Batasan", "United States" |
|
94 |
+
| ORG | "MMDA", "International Monitoring Team", "Coordinating Committees for the Cessation of Hostilities" |
|
95 |
+
| PER | "Puno", "Fernando", "Villavicencio" |
|
96 |
+
|
97 |
+
## Evaluation
|
98 |
+
|
99 |
+
### Metrics
|
100 |
+
| Label | Precision | Recall | F1 |
|
101 |
+
|:--------|:----------|:-------|:-------|
|
102 |
+
| **all** | 0.8737 | 0.9042 | 0.8887 |
|
103 |
+
| LOC | 0.8830 | 0.9084 | 0.8955 |
|
104 |
+
| ORG | 0.7579 | 0.8587 | 0.8052 |
|
105 |
+
| PER | 0.9264 | 0.9220 | 0.9242 |
|
106 |
+
|
107 |
+
## Uses
|
108 |
+
|
109 |
+
### Direct Use for Inference
|
110 |
+
|
111 |
+
```python
|
112 |
+
from span_marker import SpanMarkerModel
|
113 |
+
|
114 |
+
# Download from the 🤗 Hub
|
115 |
+
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-mbert-base-tlunified")
|
116 |
+
# Run inference
|
117 |
+
entities = model.predict("Idinagdag ni South Cotabato Rep Darlene Antonino - Custodio, na illegal na ipagpaliban ang halalan sa ARMM kung ang gagamitin lamang basehan ay ang ipapasang panukala ng Kongreso.")
|
118 |
+
```
|
119 |
+
|
120 |
+
### Downstream Use
|
121 |
+
You can finetune this model on your own dataset.
|
122 |
+
|
123 |
+
<details><summary>Click to expand</summary>
|
124 |
+
|
125 |
+
```python
|
126 |
+
from span_marker import SpanMarkerModel, Trainer
|
127 |
+
|
128 |
+
# Download from the 🤗 Hub
|
129 |
+
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-mbert-base-tlunified")
|
130 |
+
|
131 |
+
# Specify a Dataset with "tokens" and "ner_tag" columns
|
132 |
+
dataset = load_dataset("conll2003") # For example CoNLL2003
|
133 |
+
|
134 |
+
# Initialize a Trainer using the pretrained model & dataset
|
135 |
+
trainer = Trainer(
|
136 |
+
model=model,
|
137 |
+
train_dataset=dataset["train"],
|
138 |
+
eval_dataset=dataset["validation"],
|
139 |
+
)
|
140 |
+
trainer.train()
|
141 |
+
trainer.save_model("tomaarsen/span-marker-mbert-base-tlunified-finetuned")
|
142 |
+
```
|
143 |
+
</details>
|
144 |
+
|
145 |
+
<!--
|
146 |
+
### Out-of-Scope Use
|
147 |
+
|
148 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
149 |
+
-->
|
150 |
+
|
151 |
+
<!--
|
152 |
+
## Bias, Risks and Limitations
|
153 |
+
|
154 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
155 |
+
-->
|
156 |
+
|
157 |
+
<!--
|
158 |
+
### Recommendations
|
159 |
+
|
160 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
161 |
+
-->
|
162 |
+
|
163 |
+
## Training Details
|
164 |
+
|
165 |
+
### Training Set Metrics
|
166 |
+
| Training set | Min | Median | Max |
|
167 |
+
|:----------------------|:----|:--------|:----|
|
168 |
+
| Sentence length | 1 | 31.7625 | 150 |
|
169 |
+
| Entities per sentence | 0 | 2.0661 | 38 |
|
170 |
+
|
171 |
+
### Training Hyperparameters
|
172 |
+
- learning_rate: 5e-05
|
173 |
+
- train_batch_size: 16
|
174 |
+
- eval_batch_size: 16
|
175 |
+
- seed: 42
|
176 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
177 |
+
- lr_scheduler_type: linear
|
178 |
+
- lr_scheduler_warmup_ratio: 0.1
|
179 |
+
- num_epochs: 3
|
180 |
+
|
181 |
+
### Training Results
|
182 |
+
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|
183 |
+
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
|
184 |
+
| 0.6803 | 400 | 0.0074 | 0.8552 | 0.8835 | 0.8691 | 0.9774 |
|
185 |
+
| 1.3605 | 800 | 0.0072 | 0.8709 | 0.9034 | 0.8869 | 0.9798 |
|
186 |
+
| 2.0408 | 1200 | 0.0070 | 0.8753 | 0.9053 | 0.8900 | 0.9812 |
|
187 |
+
| 2.7211 | 1600 | 0.0065 | 0.8876 | 0.9003 | 0.8939 | 0.9807 |
|
188 |
+
|
189 |
+
### Environmental Impact
|
190 |
+
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
191 |
+
- **Carbon Emitted**: 0.022 kg of CO2
|
192 |
+
- **Hours Used**: 0.238 hours
|
193 |
+
|
194 |
+
### Training Hardware
|
195 |
+
- **On Cloud**: No
|
196 |
+
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
197 |
+
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
198 |
+
- **RAM Size**: 31.78 GB
|
199 |
+
|
200 |
+
### Framework Versions
|
201 |
+
- Python: 3.9.16
|
202 |
+
- SpanMarker: 1.5.1.dev
|
203 |
+
- Transformers: 4.30.0
|
204 |
+
- PyTorch: 2.0.1+cu118
|
205 |
+
- Datasets: 2.14.0
|
206 |
+
- Tokenizers: 0.13.3
|
207 |
+
|
208 |
+
## Citation
|
209 |
+
|
210 |
+
### BibTeX
|
211 |
+
```
|
212 |
+
@software{Aarsen_SpanMarker,
|
213 |
+
author = {Aarsen, Tom},
|
214 |
+
license = {Apache-2.0},
|
215 |
+
title = {{SpanMarker for Named Entity Recognition}},
|
216 |
+
url = {https://github.com/tomaarsen/SpanMarkerNER}
|
217 |
+
}
|
218 |
+
```
|
219 |
+
|
220 |
+
<!--
|
221 |
+
## Glossary
|
222 |
+
|
223 |
+
*Clearly define terms in order to be accessible across audiences.*
|
224 |
+
-->
|
225 |
+
|
226 |
+
<!--
|
227 |
+
## Model Card Authors
|
228 |
+
|
229 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
230 |
+
-->
|
231 |
+
|
232 |
+
<!--
|
233 |
+
## Model Card Contact
|
234 |
+
|
235 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
236 |
+
-->
|
added_tokens.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<end>": 119548,
|
3 |
+
"<start>": 119547
|
4 |
+
}
|
config.json
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"SpanMarkerModel"
|
4 |
+
],
|
5 |
+
"encoder": {
|
6 |
+
"_name_or_path": "bert-base-multilingual-cased",
|
7 |
+
"add_cross_attention": false,
|
8 |
+
"architectures": [
|
9 |
+
"BertForMaskedLM"
|
10 |
+
],
|
11 |
+
"attention_probs_dropout_prob": 0.1,
|
12 |
+
"bad_words_ids": null,
|
13 |
+
"begin_suppress_tokens": null,
|
14 |
+
"bos_token_id": null,
|
15 |
+
"chunk_size_feed_forward": 0,
|
16 |
+
"classifier_dropout": null,
|
17 |
+
"cross_attention_hidden_size": null,
|
18 |
+
"decoder_start_token_id": null,
|
19 |
+
"directionality": "bidi",
|
20 |
+
"diversity_penalty": 0.0,
|
21 |
+
"do_sample": false,
|
22 |
+
"early_stopping": false,
|
23 |
+
"encoder_no_repeat_ngram_size": 0,
|
24 |
+
"eos_token_id": null,
|
25 |
+
"exponential_decay_length_penalty": null,
|
26 |
+
"finetuning_task": null,
|
27 |
+
"forced_bos_token_id": null,
|
28 |
+
"forced_eos_token_id": null,
|
29 |
+
"hidden_act": "gelu",
|
30 |
+
"hidden_dropout_prob": 0.1,
|
31 |
+
"hidden_size": 768,
|
32 |
+
"id2label": {
|
33 |
+
"0": "O",
|
34 |
+
"1": "B-PER",
|
35 |
+
"2": "I-PER",
|
36 |
+
"3": "B-ORG",
|
37 |
+
"4": "I-ORG",
|
38 |
+
"5": "B-LOC",
|
39 |
+
"6": "I-LOC"
|
40 |
+
},
|
41 |
+
"initializer_range": 0.02,
|
42 |
+
"intermediate_size": 3072,
|
43 |
+
"is_decoder": false,
|
44 |
+
"is_encoder_decoder": false,
|
45 |
+
"label2id": {
|
46 |
+
"B-LOC": 5,
|
47 |
+
"B-ORG": 3,
|
48 |
+
"B-PER": 1,
|
49 |
+
"I-LOC": 6,
|
50 |
+
"I-ORG": 4,
|
51 |
+
"I-PER": 2,
|
52 |
+
"O": 0
|
53 |
+
},
|
54 |
+
"layer_norm_eps": 1e-12,
|
55 |
+
"length_penalty": 1.0,
|
56 |
+
"max_length": 20,
|
57 |
+
"max_position_embeddings": 512,
|
58 |
+
"min_length": 0,
|
59 |
+
"model_type": "bert",
|
60 |
+
"no_repeat_ngram_size": 0,
|
61 |
+
"num_attention_heads": 12,
|
62 |
+
"num_beam_groups": 1,
|
63 |
+
"num_beams": 1,
|
64 |
+
"num_hidden_layers": 12,
|
65 |
+
"num_return_sequences": 1,
|
66 |
+
"output_attentions": false,
|
67 |
+
"output_hidden_states": false,
|
68 |
+
"output_scores": false,
|
69 |
+
"pad_token_id": 0,
|
70 |
+
"pooler_fc_size": 768,
|
71 |
+
"pooler_num_attention_heads": 12,
|
72 |
+
"pooler_num_fc_layers": 3,
|
73 |
+
"pooler_size_per_head": 128,
|
74 |
+
"pooler_type": "first_token_transform",
|
75 |
+
"position_embedding_type": "absolute",
|
76 |
+
"prefix": null,
|
77 |
+
"problem_type": null,
|
78 |
+
"pruned_heads": {},
|
79 |
+
"remove_invalid_values": false,
|
80 |
+
"repetition_penalty": 1.0,
|
81 |
+
"return_dict": true,
|
82 |
+
"return_dict_in_generate": false,
|
83 |
+
"sep_token_id": null,
|
84 |
+
"suppress_tokens": null,
|
85 |
+
"task_specific_params": null,
|
86 |
+
"temperature": 1.0,
|
87 |
+
"tf_legacy_loss": false,
|
88 |
+
"tie_encoder_decoder": false,
|
89 |
+
"tie_word_embeddings": true,
|
90 |
+
"tokenizer_class": null,
|
91 |
+
"top_k": 50,
|
92 |
+
"top_p": 1.0,
|
93 |
+
"torch_dtype": null,
|
94 |
+
"torchscript": false,
|
95 |
+
"transformers_version": "4.30.0",
|
96 |
+
"type_vocab_size": 2,
|
97 |
+
"typical_p": 1.0,
|
98 |
+
"use_bfloat16": false,
|
99 |
+
"use_cache": true,
|
100 |
+
"vocab_size": 119549
|
101 |
+
},
|
102 |
+
"entity_max_length": 8,
|
103 |
+
"id2label": {
|
104 |
+
"0": "O",
|
105 |
+
"1": "LOC",
|
106 |
+
"2": "ORG",
|
107 |
+
"3": "PER"
|
108 |
+
},
|
109 |
+
"id2reduced_id": {
|
110 |
+
"0": 0,
|
111 |
+
"1": 3,
|
112 |
+
"2": 3,
|
113 |
+
"3": 2,
|
114 |
+
"4": 2,
|
115 |
+
"5": 1,
|
116 |
+
"6": 1
|
117 |
+
},
|
118 |
+
"label2id": {
|
119 |
+
"LOC": 1,
|
120 |
+
"O": 0,
|
121 |
+
"ORG": 2,
|
122 |
+
"PER": 3
|
123 |
+
},
|
124 |
+
"marker_max_length": 128,
|
125 |
+
"max_next_context": null,
|
126 |
+
"max_prev_context": null,
|
127 |
+
"model_max_length": 256,
|
128 |
+
"model_max_length_default": 512,
|
129 |
+
"model_type": "span-marker",
|
130 |
+
"span_marker_version": "1.5.1.dev",
|
131 |
+
"torch_dtype": "float32",
|
132 |
+
"trained_with_document_context": false,
|
133 |
+
"transformers_version": "4.30.0",
|
134 |
+
"vocab_size": 119549
|
135 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:434c3a0d8fb796b8cf20aafa33d9226b1a7e0f953a2c3f1b76f0b2d006c4d33d
|
3 |
+
size 711517877
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": true,
|
3 |
+
"clean_up_tokenization_spaces": true,
|
4 |
+
"cls_token": "[CLS]",
|
5 |
+
"do_lower_case": false,
|
6 |
+
"entity_max_length": 8,
|
7 |
+
"marker_max_length": 128,
|
8 |
+
"mask_token": "[MASK]",
|
9 |
+
"model_max_length": 256,
|
10 |
+
"pad_token": "[PAD]",
|
11 |
+
"sep_token": "[SEP]",
|
12 |
+
"strip_accents": null,
|
13 |
+
"tokenize_chinese_chars": true,
|
14 |
+
"tokenizer_class": "BertTokenizer",
|
15 |
+
"unk_token": "[UNK]"
|
16 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|