tomervazana commited on
Commit
d525b33
1 Parent(s): 171fbc9

default-LunarLander-v2-deeprl-course-unit1

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 276.47 +/- 19.87
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ca3c72c0af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ca3c72c0b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ca3c72c0c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ca3c72c0ca0>", "_build": "<function ActorCriticPolicy._build at 0x7ca3c72c0d30>", "forward": "<function ActorCriticPolicy.forward at 0x7ca3c72c0dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ca3c72c0e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ca3c72c0ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ca3c72c0f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ca3c72c1000>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ca3c72c1090>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ca3c72c1120>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ca3c724f900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726931467046601999, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABzhL3f3DM/u907vSf4sr6paWm9LddzvQAAAAAAAAAAptC9PX+fHz+GiRu+Y3yOvqbRfrwxb8e9AAAAAAAAAAAa5VK9eFrDPn/XNr5gC5u+1PAUvjo7+DwAAAAAAAAAAPOhir0UPIO6YwDKO3RcTzhjcjM6pHJFuAAAAAAAAIA/4OiRvlyYhL2vYBI7XZsmOl/X4j4wUlm6AACAPwAAgD9mfCE9T1IzPVaiyL10vT2+e5M9vTso3rwAAAAAAAAAAM1t3ryPZjS6jswjPWpnQr5f4yY8JEy7vAAAAAAAAAAAuo2HvklGpz9UdBa/RRIIvwGir75ptRK+AAAAAAAAAAAARJa99goOvI5GWDxkwFk8W/thPf7nN70AAAAAAACAP80kLDtcnye6mlALPrZBPb4It209+yMdvwAAAAAAAIA/msdrPKoqqD/O6Pk9VBf4vk9PbjwBfA4+AAAAAAAAAABmJQa+FKHfPZIBXD68P4m+N/4pPXKiIT0AAAAAAAAAAM1gNL1xjUy57oApuHf5R7FiTn+56VhJNwAAgD8AAIA/zZMFvQxeuT5C5qU99xOsvsN3JjvRQY88AAAAAAAAAAAayce9Z6wyPq+QQD6W91u+08bBPIBPiD0AAAAAAAAAAACbBb47+fY9LLGIPI5fjr7EoN29xhOmOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEqHrAP/aQGMAWyUS7GMAXSUR0CW4H+evpyIdX2UKGgGR0BvDh66asp5aAdL9mgIR0CW4LQjD8+BdX2UKGgGR0BwcI0Mw1ziaAdNJQFoCEdAluKw08/2TXV9lChoBkdAbwq1xbSql2gHTSwBaAhHQJbiqOAAhjh1fZQoaAZHQHC1LX6InBtoB009AWgIR0CW5B/CZWq+dX2UKGgGR0BuIL3fyf+TaAdNBQFoCEdAluQfO2RaHXV9lChoBkdAcR1PluFYdWgHTQ4BaAhHQJbkOixmkFh1fZQoaAZHQHF824y44IdoB0v3aAhHQJbkkNx2jfx1fZQoaAZHQG/lZL7GecxoB00dAWgIR0CW5JDeTFERdX2UKGgGR0Bs6KMo+fRNaAdNOAFoCEdAluTMY64lQnV9lChoBkdAcLm7fYSQHWgHTQ0BaAhHQJbl4kWykbh1fZQoaAZHQHEtCmMwUQFoB00iAWgIR0CW53a99MK1dX2UKGgGR0ByFuMCLdeqaAdL+WgIR0CW57b48EFGdX2UKGgGR0BxQ4JKJ2t/aAdNBwFoCEdAlukCKm8/U3V9lChoBkdAbaiO6NEPUmgHTTIBaAhHQJbpzp/wy7B1fZQoaAZHQHHlrsa86FNoB00yAWgIR0CW6doLG7z1dX2UKGgGR0BxPw5HVf/naAdNIAFoCEdAlungRGtp23V9lChoBkdAcOxRCQcPv2gHTSgBaAhHQJbqXKuB+Wp1fZQoaAZHQG+ZVNQCSzRoB0vraAhHQJbqe/SH/Ll1fZQoaAZHQFCuEW69TP1oB0vGaAhHQJbq1HlOoHd1fZQoaAZHQHBWeLBKtgdoB0v/aAhHQJbrA3IdU851fZQoaAZHQHDvlOwgTytoB0vzaAhHQJbsP2YfGMp1fZQoaAZHQG7/ywOe8PFoB00CAWgIR0CW7D9NN8E3dX2UKGgGR0Bw6FJnQID6aAdL82gIR0CW7HxY7q6fdX2UKGgGR0BuV4RNATqTaAdNFQFoCEdAluy2NedCmnV9lChoBkdAcdoDVpblimgHS+poCEdAlu09i2DxsnV9lChoBkdAcVU150KZ2WgHTSkBaAhHQJbth0YCQtB1fZQoaAZHQHLYkR3/xUhoB00XAWgIR0CW75oPCl7/dX2UKGgGR0ByJGtU4rBkaAdL/WgIR0CW8KfI0ZWJdX2UKGgGR0Bw4U371qWUaAdNBgFoCEdAlvEFZX+2mnV9lChoBkdAcdOfp2U0N2gHTR8BaAhHQJbxBFc6eXl1fZQoaAZHQG52JSzgMttoB00LAWgIR0CW8ShysCDFdX2UKGgGR0BsPBmh/RVqaAdNBAFoCEdAlvFz81n/UHV9lChoBkdAcQdEUj9n9WgHTQsBaAhHQJbyQP7N0Nl1fZQoaAZHQHC33m/336BoB01wAWgIR0CW8sJ6IFeOdX2UKGgGR0BvU2+CbtqpaAdNFQFoCEdAlvMHUc4o7XV9lChoBkdAcsBWv8qFy2gHS+doCEdAlvMZiuuA7XV9lChoBkdAbKVuqFRHgGgHS/poCEdAlvP8yvcJt3V9lChoBkdAcDoCL/CIlGgHTSgBaAhHQJb1oNZvDP51fZQoaAZHQHDSDDbah6BoB00rAWgIR0CW9klsP8Q7dX2UKGgGR0Buj5s41gpjaAdNDwFoCEdAlvZ7LMcIaHV9lChoBkdAcPWpLVWjoWgHTSwBaAhHQJb29tSAH3V1fZQoaAZHQHBuqisXBP9oB00QAWgIR0CXEmt5D7ZWdX2UKGgGR0BxaBYGMXJpaAdNBAFoCEdAlxKFAiV0LnV9lChoBkdAcRzAzpHI62gHTToBaAhHQJcSr3SKFZh1fZQoaAZHQHJgeYlY2bZoB00KAWgIR0CXEw/8EV32dX2UKGgGR0BxzHhVENONaAdNHwFoCEdAlxNFmapgkXV9lChoBkdAc3Eo6S1VpGgHTTUBaAhHQJcT8Y51eSl1fZQoaAZHQHB+giiZfD1oB00eAWgIR0CXFL1mJ3xGdX2UKGgGR0BsmD2g3974aAdNLAFoCEdAlxTi9AX2unV9lChoBkdAct2jU/fO2WgHTR8BaAhHQJcVGs0YTCd1fZQoaAZHQHFQ3I+4b0hoB00nAWgIR0CXFUAymALBdX2UKGgGR0BxBLlDF6zFaAdNCgFoCEdAlxZW4mTkhnV9lChoBkdAcC3Yv38GcGgHS/toCEdAlxaM6/7BPHV9lChoBkdAb/2CFsYVI2gHTTgBaAhHQJcWnk92X9l1fZQoaAZHQHDkWtQsPJ9oB02NAmgIR0CXFuMkQf6odX2UKGgGR0BwhjGaQV9GaAdNAgFoCEdAlxdgkHD77HV9lChoBkdAcvHwKBun/GgHTTMBaAhHQJcYN8+iaiN1fZQoaAZHQHFEvhl18stoB00dAWgIR0CXG/Wi1y/9dX2UKGgGR0Bs4GuzQeFMaAdNKgFoCEdAlxwkk0JnhHV9lChoBkdAcumJJ5E+gWgHS/poCEdAlxwkEgW8AnV9lChoBkdAcZkO8TSLImgHS+VoCEdAlxxK/ATIvXV9lChoBkdAcU3vPC2tuGgHTSUBaAhHQJcckjW07bN1fZQoaAZHQHLOWIwdsBRoB00jAWgIR0CXHLjUutfYdX2UKGgGR0Bu3MaMrEtNaAdL+WgIR0CXHQPQOWjXdX2UKGgGR0BxACYgJTl1aAdNRwFoCEdAlx0Z6Uqx1XV9lChoBkdAcOwDuSfUWmgHS+9oCEdAlx55G4I8hnV9lChoBkdAck2ahHskZGgHS/poCEdAlx6FMZgogHV9lChoBkdAcCT9cKPXCmgHTSgBaAhHQJcekfaHsTp1fZQoaAZHQG+HgLZzxPRoB0vpaAhHQJcfjMaCL/F1fZQoaAZHQHMTvyPMjeNoB01GAWgIR0CXH/iB5HEudX2UKGgGR0BwNoJng5zYaAdNDwFoCEdAlyGR8pkPMHV9lChoBkdAcQ+w+MZP22gHTUQBaAhHQJchse/5+H91fZQoaAZHQHJysLWqcVhoB01lAWgIR0CXIjV4HHFQdX2UKGgGR0By+qP5pJwsaAdL8mgIR0CXJCkHD766dX2UKGgGR0Bx/XOHFglXaAdNCAFoCEdAlyTljI7vHHV9lChoBkdAcgn6Hj6vaGgHS/VoCEdAlyVXZ9NN8HV9lChoBkdAc0usyi22HGgHTRABaAhHQJclVIlMRHx1fZQoaAZHQHGAT4gzP8hoB00hAWgIR0CXJZVS4vvjdX2UKGgGR0BwHZYW+GoKaAdNJQFoCEdAlyZEm6XjVHV9lChoBkdAcLhxaxHG0mgHS/toCEdAlycNM9KVZHV9lChoBkdAb4ZA57w8XGgHTQEBaAhHQJcnWV2Rq491fZQoaAZHQHDeVi4J/odoB00GAWgIR0CXJ3NEgGKRdX2UKGgGR0BycyOGTLW7aAdL6GgIR0CXJ68PnSv1dX2UKGgGR0BvpYDvE0iyaAdNWwFoCEdAlygRF3IMjXV9lChoBkdAbzizJp35e2gHTTMBaAhHQJcpVbqyGBZ1fZQoaAZHQHHk2PT5O8FoB00VAWgIR0CXKwFvQ4S6dX2UKGgGR0BxGjvG6wt8aAdNGwFoCEdAlyv+sYEW7HV9lChoBkdAckjn3cpLEmgHS/5oCEdAly1V67dzn3V9lChoBkdAcNqdgfEGaGgHS/JoCEdAly1f8/D+BHV9lChoBkdAcn98uSOinGgHTRUBaAhHQJctXt/nW8R1fZQoaAZHQFIhGfPHDJloB0vEaAhHQJcuK/wiJO51fZQoaAZHQHDrCVjZteloB010AWgIR0CXLrFXJYDDdX2UKGgGR0Bwh1olD4QCaAdNEQFoCEdAly687EHdGnV9lChoBkdAb3C/X5FgD2gHTR0BaAhHQJcx7Z7HAAR1fZQoaAZHQHIzPkq+ajNoB00LAWgIR0CXMi6ol2NedX2UKGgGR0BwlUU+LWI5aAdNDwFoCEdAlzMkEX+ERXV9lChoBkdAcu69xIatLmgHTSQBaAhHQJczxsImgJ11fZQoaAZHQHCKTvAoG6hoB02DAWgIR0CXNX7cO9WZdX2UKGgGR0Bv7t81Gb1AaAdL/GgIR0CXNw1BdD6WdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42de4b089f1fdb231ae31ab52c3def02d43542c00a3a043b69f93f6598de2659
3
+ size 148048
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ca3c72c0af0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ca3c72c0b80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ca3c72c0c10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ca3c72c0ca0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ca3c72c0d30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ca3c72c0dc0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ca3c72c0e50>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ca3c72c0ee0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ca3c72c0f70>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ca3c72c1000>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ca3c72c1090>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ca3c72c1120>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ca3c724f900>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1726931467046601999,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABzhL3f3DM/u907vSf4sr6paWm9LddzvQAAAAAAAAAAptC9PX+fHz+GiRu+Y3yOvqbRfrwxb8e9AAAAAAAAAAAa5VK9eFrDPn/XNr5gC5u+1PAUvjo7+DwAAAAAAAAAAPOhir0UPIO6YwDKO3RcTzhjcjM6pHJFuAAAAAAAAIA/4OiRvlyYhL2vYBI7XZsmOl/X4j4wUlm6AACAPwAAgD9mfCE9T1IzPVaiyL10vT2+e5M9vTso3rwAAAAAAAAAAM1t3ryPZjS6jswjPWpnQr5f4yY8JEy7vAAAAAAAAAAAuo2HvklGpz9UdBa/RRIIvwGir75ptRK+AAAAAAAAAAAARJa99goOvI5GWDxkwFk8W/thPf7nN70AAAAAAACAP80kLDtcnye6mlALPrZBPb4It209+yMdvwAAAAAAAIA/msdrPKoqqD/O6Pk9VBf4vk9PbjwBfA4+AAAAAAAAAABmJQa+FKHfPZIBXD68P4m+N/4pPXKiIT0AAAAAAAAAAM1gNL1xjUy57oApuHf5R7FiTn+56VhJNwAAgD8AAIA/zZMFvQxeuT5C5qU99xOsvsN3JjvRQY88AAAAAAAAAAAayce9Z6wyPq+QQD6W91u+08bBPIBPiD0AAAAAAAAAAACbBb47+fY9LLGIPI5fjr7EoN29xhOmOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVKAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEqHrAP/aQGMAWyUS7GMAXSUR0CW4H+evpyIdX2UKGgGR0BvDh66asp5aAdL9mgIR0CW4LQjD8+BdX2UKGgGR0BwcI0Mw1ziaAdNJQFoCEdAluKw08/2TXV9lChoBkdAbwq1xbSql2gHTSwBaAhHQJbiqOAAhjh1fZQoaAZHQHC1LX6InBtoB009AWgIR0CW5B/CZWq+dX2UKGgGR0BuIL3fyf+TaAdNBQFoCEdAluQfO2RaHXV9lChoBkdAcR1PluFYdWgHTQ4BaAhHQJbkOixmkFh1fZQoaAZHQHF824y44IdoB0v3aAhHQJbkkNx2jfx1fZQoaAZHQG/lZL7GecxoB00dAWgIR0CW5JDeTFERdX2UKGgGR0Bs6KMo+fRNaAdNOAFoCEdAluTMY64lQnV9lChoBkdAcLm7fYSQHWgHTQ0BaAhHQJbl4kWykbh1fZQoaAZHQHEtCmMwUQFoB00iAWgIR0CW53a99MK1dX2UKGgGR0ByFuMCLdeqaAdL+WgIR0CW57b48EFGdX2UKGgGR0BxQ4JKJ2t/aAdNBwFoCEdAlukCKm8/U3V9lChoBkdAbaiO6NEPUmgHTTIBaAhHQJbpzp/wy7B1fZQoaAZHQHHlrsa86FNoB00yAWgIR0CW6doLG7z1dX2UKGgGR0BxPw5HVf/naAdNIAFoCEdAlungRGtp23V9lChoBkdAcOxRCQcPv2gHTSgBaAhHQJbqXKuB+Wp1fZQoaAZHQG+ZVNQCSzRoB0vraAhHQJbqe/SH/Ll1fZQoaAZHQFCuEW69TP1oB0vGaAhHQJbq1HlOoHd1fZQoaAZHQHBWeLBKtgdoB0v/aAhHQJbrA3IdU851fZQoaAZHQHDvlOwgTytoB0vzaAhHQJbsP2YfGMp1fZQoaAZHQG7/ywOe8PFoB00CAWgIR0CW7D9NN8E3dX2UKGgGR0Bw6FJnQID6aAdL82gIR0CW7HxY7q6fdX2UKGgGR0BuV4RNATqTaAdNFQFoCEdAluy2NedCmnV9lChoBkdAcdoDVpblimgHS+poCEdAlu09i2DxsnV9lChoBkdAcVU150KZ2WgHTSkBaAhHQJbth0YCQtB1fZQoaAZHQHLYkR3/xUhoB00XAWgIR0CW75oPCl7/dX2UKGgGR0ByJGtU4rBkaAdL/WgIR0CW8KfI0ZWJdX2UKGgGR0Bw4U371qWUaAdNBgFoCEdAlvEFZX+2mnV9lChoBkdAcdOfp2U0N2gHTR8BaAhHQJbxBFc6eXl1fZQoaAZHQG52JSzgMttoB00LAWgIR0CW8ShysCDFdX2UKGgGR0BsPBmh/RVqaAdNBAFoCEdAlvFz81n/UHV9lChoBkdAcQdEUj9n9WgHTQsBaAhHQJbyQP7N0Nl1fZQoaAZHQHC33m/336BoB01wAWgIR0CW8sJ6IFeOdX2UKGgGR0BvU2+CbtqpaAdNFQFoCEdAlvMHUc4o7XV9lChoBkdAcsBWv8qFy2gHS+doCEdAlvMZiuuA7XV9lChoBkdAbKVuqFRHgGgHS/poCEdAlvP8yvcJt3V9lChoBkdAcDoCL/CIlGgHTSgBaAhHQJb1oNZvDP51fZQoaAZHQHDSDDbah6BoB00rAWgIR0CW9klsP8Q7dX2UKGgGR0Buj5s41gpjaAdNDwFoCEdAlvZ7LMcIaHV9lChoBkdAcPWpLVWjoWgHTSwBaAhHQJb29tSAH3V1fZQoaAZHQHBuqisXBP9oB00QAWgIR0CXEmt5D7ZWdX2UKGgGR0BxaBYGMXJpaAdNBAFoCEdAlxKFAiV0LnV9lChoBkdAcRzAzpHI62gHTToBaAhHQJcSr3SKFZh1fZQoaAZHQHJgeYlY2bZoB00KAWgIR0CXEw/8EV32dX2UKGgGR0BxzHhVENONaAdNHwFoCEdAlxNFmapgkXV9lChoBkdAc3Eo6S1VpGgHTTUBaAhHQJcT8Y51eSl1fZQoaAZHQHB+giiZfD1oB00eAWgIR0CXFL1mJ3xGdX2UKGgGR0BsmD2g3974aAdNLAFoCEdAlxTi9AX2unV9lChoBkdAct2jU/fO2WgHTR8BaAhHQJcVGs0YTCd1fZQoaAZHQHFQ3I+4b0hoB00nAWgIR0CXFUAymALBdX2UKGgGR0BxBLlDF6zFaAdNCgFoCEdAlxZW4mTkhnV9lChoBkdAcC3Yv38GcGgHS/toCEdAlxaM6/7BPHV9lChoBkdAb/2CFsYVI2gHTTgBaAhHQJcWnk92X9l1fZQoaAZHQHDkWtQsPJ9oB02NAmgIR0CXFuMkQf6odX2UKGgGR0BwhjGaQV9GaAdNAgFoCEdAlxdgkHD77HV9lChoBkdAcvHwKBun/GgHTTMBaAhHQJcYN8+iaiN1fZQoaAZHQHFEvhl18stoB00dAWgIR0CXG/Wi1y/9dX2UKGgGR0Bs4GuzQeFMaAdNKgFoCEdAlxwkk0JnhHV9lChoBkdAcumJJ5E+gWgHS/poCEdAlxwkEgW8AnV9lChoBkdAcZkO8TSLImgHS+VoCEdAlxxK/ATIvXV9lChoBkdAcU3vPC2tuGgHTSUBaAhHQJcckjW07bN1fZQoaAZHQHLOWIwdsBRoB00jAWgIR0CXHLjUutfYdX2UKGgGR0Bu3MaMrEtNaAdL+WgIR0CXHQPQOWjXdX2UKGgGR0BxACYgJTl1aAdNRwFoCEdAlx0Z6Uqx1XV9lChoBkdAcOwDuSfUWmgHS+9oCEdAlx55G4I8hnV9lChoBkdAck2ahHskZGgHS/poCEdAlx6FMZgogHV9lChoBkdAcCT9cKPXCmgHTSgBaAhHQJcekfaHsTp1fZQoaAZHQG+HgLZzxPRoB0vpaAhHQJcfjMaCL/F1fZQoaAZHQHMTvyPMjeNoB01GAWgIR0CXH/iB5HEudX2UKGgGR0BwNoJng5zYaAdNDwFoCEdAlyGR8pkPMHV9lChoBkdAcQ+w+MZP22gHTUQBaAhHQJchse/5+H91fZQoaAZHQHJysLWqcVhoB01lAWgIR0CXIjV4HHFQdX2UKGgGR0By+qP5pJwsaAdL8mgIR0CXJCkHD766dX2UKGgGR0Bx/XOHFglXaAdNCAFoCEdAlyTljI7vHHV9lChoBkdAcgn6Hj6vaGgHS/VoCEdAlyVXZ9NN8HV9lChoBkdAc0usyi22HGgHTRABaAhHQJclVIlMRHx1fZQoaAZHQHGAT4gzP8hoB00hAWgIR0CXJZVS4vvjdX2UKGgGR0BwHZYW+GoKaAdNJQFoCEdAlyZEm6XjVHV9lChoBkdAcLhxaxHG0mgHS/toCEdAlycNM9KVZHV9lChoBkdAb4ZA57w8XGgHTQEBaAhHQJcnWV2Rq491fZQoaAZHQHDeVi4J/odoB00GAWgIR0CXJ3NEgGKRdX2UKGgGR0BycyOGTLW7aAdL6GgIR0CXJ68PnSv1dX2UKGgGR0BvpYDvE0iyaAdNWwFoCEdAlygRF3IMjXV9lChoBkdAbzizJp35e2gHTTMBaAhHQJcpVbqyGBZ1fZQoaAZHQHHk2PT5O8FoB00VAWgIR0CXKwFvQ4S6dX2UKGgGR0BxGjvG6wt8aAdNGwFoCEdAlyv+sYEW7HV9lChoBkdAckjn3cpLEmgHS/5oCEdAly1V67dzn3V9lChoBkdAcNqdgfEGaGgHS/JoCEdAly1f8/D+BHV9lChoBkdAcn98uSOinGgHTRUBaAhHQJctXt/nW8R1fZQoaAZHQFIhGfPHDJloB0vEaAhHQJcuK/wiJO51fZQoaAZHQHDrCVjZteloB010AWgIR0CXLrFXJYDDdX2UKGgGR0Bwh1olD4QCaAdNEQFoCEdAly687EHdGnV9lChoBkdAb3C/X5FgD2gHTR0BaAhHQJcx7Z7HAAR1fZQoaAZHQHIzPkq+ajNoB00LAWgIR0CXMi6ol2NedX2UKGgGR0BwlUU+LWI5aAdNDwFoCEdAlzMkEX+ERXV9lChoBkdAcu69xIatLmgHTSQBaAhHQJczxsImgJ11fZQoaAZHQHCKTvAoG6hoB02DAWgIR0CXNX7cO9WZdX2UKGgGR0Bv7t81Gb1AaAdL/GgIR0CXNw1BdD6WdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d9f534108645f953c12a65760ea4b183b5b8ae914e6061c2e6df0699b1b6835
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c527cd32bf2f322c5c589deeecb1bf7496ec9654380e262efc99cf89e28b845
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.4.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (184 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 276.46511340000006, "std_reward": 19.865882500302927, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-09-21T15:33:13.589158"}