--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-hateful-meme-restructured results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.52 --- # swin-tiny-patch4-window7-224-finetuned-hateful-meme-restructured This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8519 - Accuracy: 0.52 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6441 | 0.99 | 66 | 0.7419 | 0.492 | | 0.6368 | 2.0 | 133 | 0.7235 | 0.51 | | 0.6157 | 2.99 | 199 | 0.7516 | 0.504 | | 0.5928 | 4.0 | 266 | 0.8009 | 0.502 | | 0.5735 | 4.99 | 332 | 0.8270 | 0.508 | | 0.5559 | 6.0 | 399 | 0.7804 | 0.502 | | 0.5533 | 6.99 | 465 | 0.8053 | 0.486 | | 0.5541 | 8.0 | 532 | 0.8078 | 0.504 | | 0.5218 | 8.99 | 598 | 0.8519 | 0.52 | | 0.5226 | 9.92 | 660 | 0.8522 | 0.508 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3