Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.22 +/- 0.09
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52d8ba2d0c6bb124eb1b5abea8e8480b384e68e3beb9ded7a3ada24052437dbd
|
3 |
+
size 106915
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ba0da566a70>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ba0da5745c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1692147728716855634,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAALytxPkjO0jplBd8+LytxPkjO0jplBd8+5LQQPyDanj8cK5y/LytxPkjO0jplBd8+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAd2YlP8EAmD/nbUw/5uM2vynSR74Fv+++7366P7entT+prbu/Uukqv6rpIT8vcFO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAvK3E+SM7SOmUF3z6mevU+uR6iOiuiwz4vK3E+SM7SOmUF3z6mevU+uR6iOiuiwz7ktBA/INqePxwrnL+RUyQ/KKZHPymJwL8vK3E+SM7SOmUF3z6mevU+uR6iOiuiwz6UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.2355163 0.00160832 0.43558803]\n [ 0.2355163 0.00160832 0.43558803]\n [ 0.5652602 1.2410316 -1.2200656 ]\n [ 0.2355163 0.00160832 0.43558803]]",
|
34 |
+
"desired_goal": "[[ 0.64609474 1.187523 0.798552 ]\n [-0.71441495 -0.19513763 -0.46825424]\n [ 1.4569987 1.4191808 -1.4662372 ]\n [-0.6676227 0.6324717 -0.82593054]]",
|
35 |
+
"observation": "[[ 2.3551629e-01 1.6083205e-03 4.3558803e-01 4.7945136e-01\n 1.2368775e-03 3.8209662e-01]\n [ 2.3551629e-01 1.6083205e-03 4.3558803e-01 4.7945136e-01\n 1.2368775e-03 3.8209662e-01]\n [ 5.6526017e-01 1.2410316e+00 -1.2200656e+00 6.4190012e-01\n 7.7987909e-01 -1.5041858e+00]\n [ 2.3551629e-01 1.6083205e-03 4.3558803e-01 4.7945136e-01\n 1.2368775e-03 3.8209662e-01]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2g1+PfDrCr7Zjug9F3NmPchoLr3bZRI+DG6rvakD0j3syws+Nn2zPUq2tz3VxRU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[ 0.06202493 -0.13566566 0.11355371]\n [ 0.0562621 -0.0425804 0.14296667]\n [-0.08370599 0.10254604 0.13652009]\n [ 0.08764116 0.08970316 0.14626248]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv80SVW0Z3s6MAWyUSwOMAXSUR0ClQvxUvPC3dX2UKGgGR7+jGvOhTOxCaAdLAWgIR0ClQrobfgrIdX2UKGgGR7/W1Muez2OAaAdLA2gIR0ClQnxtgrpadX2UKGgGR7/P5TIeYD1XaAdLA2gIR0ClQ0S0a6z3dX2UKGgGR7/G3Q2MsH0LaAdLA2gIR0ClQslgtvn9dX2UKGgGR7/LuyeI2wV1aAdLA2gIR0ClQoxJd0JXdX2UKGgGR7/bWj4593KTaAdLBGgIR0ClQxHpr1ujdX2UKGgGR7/SZH/cWTHKaAdLA2gIR0ClQ1PS2H+IdX2UKGgGR7/DnbItDlYEaAdLAmgIR0ClQtQjMV1wdX2UKGgGR7/CqwQlKK51aAdLAmgIR0ClQx0euFHsdX2UKGgGR7/TmlZX+2mYaAdLA2gIR0ClQp01qFh5dX2UKGgGR7/SOhkAggX/aAdLA2gIR0ClQ2P0h/y5dX2UKGgGR7/A1MM7U5MlaAdLAmgIR0ClQyaUzKs/dX2UKGgGR7/U9hqj8DSxaAdLA2gIR0ClQuRiPQv6dX2UKGgGR7/CHh0hePaMaAdLAmgIR0ClQqbkwN9ZdX2UKGgGR7+iVjZtelbeaAdLAWgIR0ClQukXUH6edX2UKGgGR7+//Lkjopx4aAdLAmgIR0ClQ23Q2MsIdX2UKGgGR7/LzvJA+pwTaAdLA2gIR0ClQzg75mAcdX2UKGgGR7+7XHzYmLLqaAdLAmgIR0ClQvZGSZBtdX2UKGgGR7/IRgZ0jkdWaAdLA2gIR0ClQrj1f3N+dX2UKGgGR7+zicXm/336aAdLAmgIR0ClQ3uSfUWmdX2UKGgGR7/Cp++dsi0OaAdLAmgIR0ClQwD28IzFdX2UKGgGR7/RM2FWXC0oaAdLA2gIR0ClQsiSidrgdX2UKGgGR7/QpX6qKgqWaAdLA2gIR0ClQ4sqSX+mdX2UKGgGR7/YaqCHymQ9aAdLBGgIR0ClQ03m/336dX2UKGgGR7+nBxgiNbTuaAdLAWgIR0ClQ5OHFglXdX2UKGgGR7/I8EFGG21EaAdLA2gIR0ClQxQtz0YkdX2UKGgGR7++vFFUhmoSaAdLAmgIR0ClQtbrkbPydX2UKGgGR7+a2OQyRB/raAdLAWgIR0ClQxnL7oB8dX2UKGgGR7/QhsqJ/G2kaAdLA2gIR0ClQ2FQVKwqdX2UKGgGR7/P92HLzPKMaAdLA2gIR0ClQubXxvvSdX2UKGgGR7/fBmPHT7VKaAdLBGgIR0ClQ6k5yU9qdX2UKGgGR7/Ljn3cpLElaAdLA2gIR0ClQynTRYzSdX2UKGgGR7/K0gKWszVMaAdLA2gIR0ClQ3Nl7MPjdX2UKGgGR7/KDcM3IdU9aAdLA2gIR0ClQvc2R7qqdX2UKGgGR7/AB5ooNNJwaAdLAmgIR0ClQ3yLAHmjdX2UKGgGR7/M3trsSkCWaAdLA2gIR0ClQzpQ+EAYdX2UKGgGR7/ge+M6zVtoaAdLBGgIR0ClQ76wD/2kdX2UKGgGR7/C9+PRzBAOaAdLAmgIR0ClQwD4pMHsdX2UKGgGR7/FpV0cOskqaAdLA2gIR0ClQ0kd3jdYdX2UKGgGR7/Q09QoCuEFaAdLA2gIR0ClQ80eU6gedX2UKGgGR7/WzVMEidJ8aAdLBGgIR0ClQ4+zD4xldX2UKGgGR7/Q6e5Fw1iwaAdLA2gIR0ClQw++mFajdX2UKGgGR7++ZiNKh+OPaAdLAmgIR0ClQ1F5WzWxdX2UKGgGR7+vjyWiUPhAaAdLAmgIR0ClQ5gzHjp+dX2UKGgGR7/OEDhcZ9/jaAdLA2gIR0ClQxy0KJEZdX2UKGgGR7/X0q6OHWSVaAdLBGgIR0ClQ+E9U0emdX2UKGgGR7/CTK1XvH94aAdLAmgIR0ClQ6PlU6xPdX2UKGgGR7/Ea72+PBBSaAdLA2gIR0ClQ2Hmig01dX2UKGgGR7+cSGrS3LFGaAdLAWgIR0ClQ+YuK4x2dX2UKGgGR7/IOd5IH1OCaAdLA2gIR0ClQyzSb6P9dX2UKGgGR7/UvuPV/c33aAdLA2gIR0ClQ7EVeruIdX2UKGgGR7/LnRsuWa+faAdLA2gIR0ClQ27ZnL7odX2UKGgGR7/Gn2qT8pCsaAdLA2gIR0ClQ/L56+nJdX2UKGgGR7/VUahpQDV6aAdLA2gIR0ClQzq1gH/tdX2UKGgGR7/SMM7U5MlDaAdLA2gIR0ClQ77b1yvLdX2UKGgGR7/Jo4+8oQWfaAdLA2gIR0ClQ3y44Ia+dX2UKGgGR7/LwEQoTfzjaAdLA2gIR0ClRAFDF6zFdX2UKGgGR7+xd2Pkq+ajaAdLAmgIR0ClQ8efI0ZWdX2UKGgGR7/U4gA6uGKyaAdLA2gIR0ClQ0fu1F6SdX2UKGgGR7/EKLKmsNlRaAdLAmgIR0ClRAoN3GGVdX2UKGgGR7+i6z3RG+bmaAdLAWgIR0ClQ0wco6S1dX2UKGgGR7/cDZlFtsN2aAdLBGgIR0ClQ4/0ulGgdX2UKGgGR7+xYJVsDW9UaAdLAmgIR0ClRBPzOHFhdX2UKGgGR7/JUuL74zrNaAdLA2gIR0ClQ9ZqmCRPdX2UKGgGR7+foq0+kgwHaAdLAWgIR0ClRBf8MuvmdX2UKGgGR7/OaJAMUh3aaAdLA2gIR0ClQ1okZ75VdX2UKGgGR7/TJGOMl1KXaAdLA2gIR0ClQ+J04iosdX2UKGgGR7/bYL9deIEbaAdLBGgIR0ClQ6BacI7edX2UKGgGR7/SQp4KQaJiaAdLA2gIR0ClRCbW3BpIdX2UKGgGR7/JkI5YHPeIaAdLA2gIR0ClQ2kSVW0adX2UKGgGR7+o482aUiY+aAdLAWgIR0ClQ2z1schldX2UKGgGR7/OPluFYdQwaAdLA2gIR0ClQ/D/2kBTdX2UKGgGR7/NQemvW6K+aAdLA2gIR0ClQ66yB06pdX2UKGgGR7/S0NBnjABUaAdLA2gIR0ClRDLnkkrxdX2UKGgGR7/UMwUQCjk/aAdLA2gIR0ClQ3icf/3ndX2UKGgGR7/MBlMAWBSUaAdLA2gIR0ClQ//JNj9XdX2UKGgGR7/QTpgTh5xBaAdLA2gIR0ClQ737UG3XdX2UKGgGR7/UanrIHTqjaAdLA2gIR0ClREOWSlnAdX2UKGgGR7+nyVfNRm9QaAdLAWgIR0ClRAYtg8bJdX2UKGgGR7/AIrOJLuhLaAdLAmgIR0ClQ8fr0J4TdX2UKGgGR7/YJGOMl1KXaAdLBGgIR0ClQ45dfLLZdX2UKGgGR7/NkauOjqOcaAdLA2gIR0ClRFBmf5DadX2UKGgGR7/Ua8Yht+CsaAdLA2gIR0ClRBL2g398dX2UKGgGR7/SHn2ZiNKiaAdLA2gIR0ClQ9fTspocdX2UKGgGR7+7tRekYXO4aAdLAmgIR0ClRFwOFxn4dX2UKGgGR7+7q2SdOIqLaAdLAmgIR0ClRB6Lfk3kdX2UKGgGR7+3O6d1+y7gaAdLAmgIR0ClQ+CLl3hXdX2UKGgGR7/WcpLEk0JoaAdLBGgIR0ClQ6Lqt5lfdX2UKGgGR7+3xhDw6QvIaAdLAmgIR0ClRCczQ/ordX2UKGgGR7/Gx9oexOclaAdLA2gIR0ClRGjR2KVIdX2UKGgGR7++VyFPBSDRaAdLAmgIR0ClQ+j1XeWOdX2UKGgGR7+3o4dZJTVEaAdLAmgIR0ClQ6tO/L1VdX2UKGgGR7+x3np0OmSAaAdLAmgIR0ClQ7W2Xsw+dX2UKGgGR7/QBOYYzi0faAdLA2gIR0ClRHewkgOjdX2UKGgGR7/bx+KCQLeAaAdLBGgIR0ClRDp/PPcBdX2UKGgGR7/OfqX4TK1YaAdLA2gIR0ClQ/g93bEhdX2UKGgGR7/A2MKkVN5/aAdLAmgIR0ClRIAqmTC+dX2UKGgGR7+5gUlAu7HyaAdLAmgIR0ClREKm8/UwdX2UKGgGR7/Vr433pOeraAdLA2gIR0ClQ8KXnhbXdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9e9a8cb00e40b172cfcb292535e19b3169ce874296e72025f3ac5efff947f07
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11905892914e0ddfc67aa7441e60b6ef7f99c2ae80ff9d8fba0bfd57f6e75d75
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ba0da566a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ba0da5745c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692147728716855634, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAALytxPkjO0jplBd8+LytxPkjO0jplBd8+5LQQPyDanj8cK5y/LytxPkjO0jplBd8+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAd2YlP8EAmD/nbUw/5uM2vynSR74Fv+++7366P7entT+prbu/Uukqv6rpIT8vcFO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAvK3E+SM7SOmUF3z6mevU+uR6iOiuiwz4vK3E+SM7SOmUF3z6mevU+uR6iOiuiwz7ktBA/INqePxwrnL+RUyQ/KKZHPymJwL8vK3E+SM7SOmUF3z6mevU+uR6iOiuiwz6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.2355163 0.00160832 0.43558803]\n [ 0.2355163 0.00160832 0.43558803]\n [ 0.5652602 1.2410316 -1.2200656 ]\n [ 0.2355163 0.00160832 0.43558803]]", "desired_goal": "[[ 0.64609474 1.187523 0.798552 ]\n [-0.71441495 -0.19513763 -0.46825424]\n [ 1.4569987 1.4191808 -1.4662372 ]\n [-0.6676227 0.6324717 -0.82593054]]", "observation": "[[ 2.3551629e-01 1.6083205e-03 4.3558803e-01 4.7945136e-01\n 1.2368775e-03 3.8209662e-01]\n [ 2.3551629e-01 1.6083205e-03 4.3558803e-01 4.7945136e-01\n 1.2368775e-03 3.8209662e-01]\n [ 5.6526017e-01 1.2410316e+00 -1.2200656e+00 6.4190012e-01\n 7.7987909e-01 -1.5041858e+00]\n [ 2.3551629e-01 1.6083205e-03 4.3558803e-01 4.7945136e-01\n 1.2368775e-03 3.8209662e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2g1+PfDrCr7Zjug9F3NmPchoLr3bZRI+DG6rvakD0j3syws+Nn2zPUq2tz3VxRU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.06202493 -0.13566566 0.11355371]\n [ 0.0562621 -0.0425804 0.14296667]\n [-0.08370599 0.10254604 0.13652009]\n [ 0.08764116 0.08970316 0.14626248]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv80SVW0Z3s6MAWyUSwOMAXSUR0ClQvxUvPC3dX2UKGgGR7+jGvOhTOxCaAdLAWgIR0ClQrobfgrIdX2UKGgGR7/W1Muez2OAaAdLA2gIR0ClQnxtgrpadX2UKGgGR7/P5TIeYD1XaAdLA2gIR0ClQ0S0a6z3dX2UKGgGR7/G3Q2MsH0LaAdLA2gIR0ClQslgtvn9dX2UKGgGR7/LuyeI2wV1aAdLA2gIR0ClQoxJd0JXdX2UKGgGR7/bWj4593KTaAdLBGgIR0ClQxHpr1ujdX2UKGgGR7/SZH/cWTHKaAdLA2gIR0ClQ1PS2H+IdX2UKGgGR7/DnbItDlYEaAdLAmgIR0ClQtQjMV1wdX2UKGgGR7/CqwQlKK51aAdLAmgIR0ClQx0euFHsdX2UKGgGR7/TmlZX+2mYaAdLA2gIR0ClQp01qFh5dX2UKGgGR7/SOhkAggX/aAdLA2gIR0ClQ2P0h/y5dX2UKGgGR7/A1MM7U5MlaAdLAmgIR0ClQyaUzKs/dX2UKGgGR7/U9hqj8DSxaAdLA2gIR0ClQuRiPQv6dX2UKGgGR7/CHh0hePaMaAdLAmgIR0ClQqbkwN9ZdX2UKGgGR7+iVjZtelbeaAdLAWgIR0ClQukXUH6edX2UKGgGR7+//Lkjopx4aAdLAmgIR0ClQ23Q2MsIdX2UKGgGR7/LzvJA+pwTaAdLA2gIR0ClQzg75mAcdX2UKGgGR7+7XHzYmLLqaAdLAmgIR0ClQvZGSZBtdX2UKGgGR7/IRgZ0jkdWaAdLA2gIR0ClQrj1f3N+dX2UKGgGR7+zicXm/336aAdLAmgIR0ClQ3uSfUWmdX2UKGgGR7/Cp++dsi0OaAdLAmgIR0ClQwD28IzFdX2UKGgGR7/RM2FWXC0oaAdLA2gIR0ClQsiSidrgdX2UKGgGR7/QpX6qKgqWaAdLA2gIR0ClQ4sqSX+mdX2UKGgGR7/YaqCHymQ9aAdLBGgIR0ClQ03m/336dX2UKGgGR7+nBxgiNbTuaAdLAWgIR0ClQ5OHFglXdX2UKGgGR7/I8EFGG21EaAdLA2gIR0ClQxQtz0YkdX2UKGgGR7++vFFUhmoSaAdLAmgIR0ClQtbrkbPydX2UKGgGR7+a2OQyRB/raAdLAWgIR0ClQxnL7oB8dX2UKGgGR7/QhsqJ/G2kaAdLA2gIR0ClQ2FQVKwqdX2UKGgGR7/P92HLzPKMaAdLA2gIR0ClQubXxvvSdX2UKGgGR7/fBmPHT7VKaAdLBGgIR0ClQ6k5yU9qdX2UKGgGR7/Ljn3cpLElaAdLA2gIR0ClQynTRYzSdX2UKGgGR7/K0gKWszVMaAdLA2gIR0ClQ3Nl7MPjdX2UKGgGR7/KDcM3IdU9aAdLA2gIR0ClQvc2R7qqdX2UKGgGR7/AB5ooNNJwaAdLAmgIR0ClQ3yLAHmjdX2UKGgGR7/M3trsSkCWaAdLA2gIR0ClQzpQ+EAYdX2UKGgGR7/ge+M6zVtoaAdLBGgIR0ClQ76wD/2kdX2UKGgGR7/C9+PRzBAOaAdLAmgIR0ClQwD4pMHsdX2UKGgGR7/FpV0cOskqaAdLA2gIR0ClQ0kd3jdYdX2UKGgGR7/Q09QoCuEFaAdLA2gIR0ClQ80eU6gedX2UKGgGR7/WzVMEidJ8aAdLBGgIR0ClQ4+zD4xldX2UKGgGR7/Q6e5Fw1iwaAdLA2gIR0ClQw++mFajdX2UKGgGR7++ZiNKh+OPaAdLAmgIR0ClQ1F5WzWxdX2UKGgGR7+vjyWiUPhAaAdLAmgIR0ClQ5gzHjp+dX2UKGgGR7/OEDhcZ9/jaAdLA2gIR0ClQxy0KJEZdX2UKGgGR7/X0q6OHWSVaAdLBGgIR0ClQ+E9U0emdX2UKGgGR7/CTK1XvH94aAdLAmgIR0ClQ6PlU6xPdX2UKGgGR7/Ea72+PBBSaAdLA2gIR0ClQ2Hmig01dX2UKGgGR7+cSGrS3LFGaAdLAWgIR0ClQ+YuK4x2dX2UKGgGR7/IOd5IH1OCaAdLA2gIR0ClQyzSb6P9dX2UKGgGR7/UvuPV/c33aAdLA2gIR0ClQ7EVeruIdX2UKGgGR7/LnRsuWa+faAdLA2gIR0ClQ27ZnL7odX2UKGgGR7/Gn2qT8pCsaAdLA2gIR0ClQ/L56+nJdX2UKGgGR7/VUahpQDV6aAdLA2gIR0ClQzq1gH/tdX2UKGgGR7/SMM7U5MlDaAdLA2gIR0ClQ77b1yvLdX2UKGgGR7/Jo4+8oQWfaAdLA2gIR0ClQ3y44Ia+dX2UKGgGR7/LwEQoTfzjaAdLA2gIR0ClRAFDF6zFdX2UKGgGR7+xd2Pkq+ajaAdLAmgIR0ClQ8efI0ZWdX2UKGgGR7/U4gA6uGKyaAdLA2gIR0ClQ0fu1F6SdX2UKGgGR7/EKLKmsNlRaAdLAmgIR0ClRAoN3GGVdX2UKGgGR7+i6z3RG+bmaAdLAWgIR0ClQ0wco6S1dX2UKGgGR7/cDZlFtsN2aAdLBGgIR0ClQ4/0ulGgdX2UKGgGR7+xYJVsDW9UaAdLAmgIR0ClRBPzOHFhdX2UKGgGR7/JUuL74zrNaAdLA2gIR0ClQ9ZqmCRPdX2UKGgGR7+foq0+kgwHaAdLAWgIR0ClRBf8MuvmdX2UKGgGR7/OaJAMUh3aaAdLA2gIR0ClQ1okZ75VdX2UKGgGR7/TJGOMl1KXaAdLA2gIR0ClQ+J04iosdX2UKGgGR7/bYL9deIEbaAdLBGgIR0ClQ6BacI7edX2UKGgGR7/SQp4KQaJiaAdLA2gIR0ClRCbW3BpIdX2UKGgGR7/JkI5YHPeIaAdLA2gIR0ClQ2kSVW0adX2UKGgGR7+o482aUiY+aAdLAWgIR0ClQ2z1schldX2UKGgGR7/OPluFYdQwaAdLA2gIR0ClQ/D/2kBTdX2UKGgGR7/NQemvW6K+aAdLA2gIR0ClQ66yB06pdX2UKGgGR7/S0NBnjABUaAdLA2gIR0ClRDLnkkrxdX2UKGgGR7/UMwUQCjk/aAdLA2gIR0ClQ3icf/3ndX2UKGgGR7/MBlMAWBSUaAdLA2gIR0ClQ//JNj9XdX2UKGgGR7/QTpgTh5xBaAdLA2gIR0ClQ737UG3XdX2UKGgGR7/UanrIHTqjaAdLA2gIR0ClREOWSlnAdX2UKGgGR7+nyVfNRm9QaAdLAWgIR0ClRAYtg8bJdX2UKGgGR7/AIrOJLuhLaAdLAmgIR0ClQ8fr0J4TdX2UKGgGR7/YJGOMl1KXaAdLBGgIR0ClQ45dfLLZdX2UKGgGR7/NkauOjqOcaAdLA2gIR0ClRFBmf5DadX2UKGgGR7/Ua8Yht+CsaAdLA2gIR0ClRBL2g398dX2UKGgGR7/SHn2ZiNKiaAdLA2gIR0ClQ9fTspocdX2UKGgGR7+7tRekYXO4aAdLAmgIR0ClRFwOFxn4dX2UKGgGR7+7q2SdOIqLaAdLAmgIR0ClRB6Lfk3kdX2UKGgGR7+3O6d1+y7gaAdLAmgIR0ClQ+CLl3hXdX2UKGgGR7/WcpLEk0JoaAdLBGgIR0ClQ6Lqt5lfdX2UKGgGR7+3xhDw6QvIaAdLAmgIR0ClRCczQ/ordX2UKGgGR7/Gx9oexOclaAdLA2gIR0ClRGjR2KVIdX2UKGgGR7++VyFPBSDRaAdLAmgIR0ClQ+j1XeWOdX2UKGgGR7+3o4dZJTVEaAdLAmgIR0ClQ6tO/L1VdX2UKGgGR7+x3np0OmSAaAdLAmgIR0ClQ7W2Xsw+dX2UKGgGR7/QBOYYzi0faAdLA2gIR0ClRHewkgOjdX2UKGgGR7/bx+KCQLeAaAdLBGgIR0ClRDp/PPcBdX2UKGgGR7/OfqX4TK1YaAdLA2gIR0ClQ/g93bEhdX2UKGgGR7/A2MKkVN5/aAdLAmgIR0ClRIAqmTC+dX2UKGgGR7+5gUlAu7HyaAdLAmgIR0ClREKm8/UwdX2UKGgGR7/Vr433pOeraAdLA2gIR0ClQ8KXnhbXdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (687 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.22014981750398874, "std_reward": 0.09058110274346487, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-16T02:13:13.980906"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14f2aed575f617e13076989245fe2d689a1e1f3d7eda3a27734a5310fd54a8b4
|
3 |
+
size 2623
|