Update README.md
Browse files
README.md
CHANGED
@@ -25,6 +25,16 @@ In the second phase, it was fine-tuned with LLaVA-JP-Instruct-108K.
|
|
25 |
resources for more information: https://github.com/tosiyuki/LLaVA-JP/tree/main
|
26 |
|
27 |
**Comparing VLMs**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
## How to use the model
|
30 |
**1. Download dependencies**
|
@@ -34,7 +44,6 @@ git clone https://github.com/tosiyuki/LLaVA-JP.git
|
|
34 |
|
35 |
**2. Inference**
|
36 |
```python
|
37 |
-
import requests
|
38 |
import torch
|
39 |
import transformers
|
40 |
from PIL import Image
|
@@ -43,12 +52,11 @@ from transformers.generation.streamers import TextStreamer
|
|
43 |
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
|
44 |
from llava.conversation import conv_templates, SeparatorStyle
|
45 |
from llava.model.llava_gpt2 import LlavaGpt2ForCausalLM
|
46 |
-
from llava.train.arguments_dataclass import ModelArguments, DataArguments, TrainingArguments
|
47 |
from llava.train.dataset import tokenizer_image_token
|
48 |
|
49 |
|
50 |
if __name__ == "__main__":
|
51 |
-
model_path = 'toshi456/llava-jp-1.3b-v1.1
|
52 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
53 |
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32
|
54 |
|
@@ -93,7 +101,7 @@ if __name__ == "__main__":
|
|
93 |
|
94 |
# create prompt
|
95 |
# ユーザー: <image>\n{prompt}
|
96 |
-
prompt = "
|
97 |
inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt
|
98 |
conv.append_message(conv.roles[0], inp)
|
99 |
conv.append_message(conv.roles[1], None)
|
@@ -115,18 +123,19 @@ if __name__ == "__main__":
|
|
115 |
|
116 |
# predict
|
117 |
with torch.inference_mode():
|
118 |
-
model.generate(
|
119 |
inputs=input_ids,
|
120 |
images=image_tensor,
|
121 |
-
do_sample=
|
122 |
-
temperature=0
|
123 |
top_p=1.0,
|
|
|
124 |
max_new_tokens=256,
|
125 |
streamer=streamer,
|
126 |
use_cache=True,
|
127 |
)
|
128 |
-
"""猫の隣にはノートパソコンがあります。"""
|
129 |
|
|
|
130 |
```
|
131 |
|
132 |
## Training dataset
|
|
|
25 |
resources for more information: https://github.com/tosiyuki/LLaVA-JP/tree/main
|
26 |
|
27 |
**Comparing VLMs**
|
28 |
+
|Model|JA-VG-VQA-500<br>(ROUGE-L)|JA-VLM-Bench-In-the-Wild<br>(ROUGE-L)|Heron-Bench(Detail)|Heron-Bench(Conv)|Heron-Bench(Complex)|Heron-Bench(Average)
|
29 |
+
|-|-|-|-|-|-|-|
|
30 |
+
|[Japanese Stable VLM](https://huggingface.co/stabilityai/japanese-stable-vlm)|-|40.50|25.15|51.23|37.84|38.07|
|
31 |
+
|[EvoVLM-JP-v1-7B](https://huggingface.co/SakanaAI/EvoVLM-JP-v1-7B)|**19.70**|**51.25**|50.31|44.42|40.47|45.07|
|
32 |
+
|[Heron BLIP Japanese StableLM Base 7B llava-620k](https://huggingface.co/turing-motors/heron-chat-blip-ja-stablelm-base-7b-v1-llava-620k)|14.51|33.26|49.09|41.51|45.72|45.44|
|
33 |
+
|[Heron GIT Japanese StableLM Base 7B](https://huggingface.co/turing-motors/heron-chat-git-ja-stablelm-base-7b-v1)|15.18|37.82|42.77|**54.20**|43.53|46.83|
|
34 |
+
|[llava-jp-1.3b-v1.1](https://huggingface.co/toshi456/llava-jp-1.3b-v1.1)|13.33|44.40|50.00|51.83|**48.98**|**50.39**|
|
35 |
+
|[llava-jp-1.3b-v1.1-llava-jp-instruct-108k](https://huggingface.co/toshi456/llava-jp-1.3b-v1.1-llava-jp-instruct-108k)|-|17.07|**50.60**|45.31|33.24|41.52|
|
36 |
+
|
37 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/630af71ffaaea618ebc973db/SIXXIqwp-voffOXKZouqb.png)
|
38 |
|
39 |
## How to use the model
|
40 |
**1. Download dependencies**
|
|
|
44 |
|
45 |
**2. Inference**
|
46 |
```python
|
|
|
47 |
import torch
|
48 |
import transformers
|
49 |
from PIL import Image
|
|
|
52 |
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
|
53 |
from llava.conversation import conv_templates, SeparatorStyle
|
54 |
from llava.model.llava_gpt2 import LlavaGpt2ForCausalLM
|
|
|
55 |
from llava.train.dataset import tokenizer_image_token
|
56 |
|
57 |
|
58 |
if __name__ == "__main__":
|
59 |
+
model_path = 'toshi456/llava-jp-1.3b-v1.1-llava-jp-instruct-108k'
|
60 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
61 |
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32
|
62 |
|
|
|
101 |
|
102 |
# create prompt
|
103 |
# ユーザー: <image>\n{prompt}
|
104 |
+
prompt = "画像について説明してください。"
|
105 |
inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt
|
106 |
conv.append_message(conv.roles[0], inp)
|
107 |
conv.append_message(conv.roles[1], None)
|
|
|
123 |
|
124 |
# predict
|
125 |
with torch.inference_mode():
|
126 |
+
output_id = model.generate(
|
127 |
inputs=input_ids,
|
128 |
images=image_tensor,
|
129 |
+
do_sample=False,
|
130 |
+
temperature=1.0,
|
131 |
top_p=1.0,
|
132 |
+
no_repeat_ngram_size=2,
|
133 |
max_new_tokens=256,
|
134 |
streamer=streamer,
|
135 |
use_cache=True,
|
136 |
)
|
|
|
137 |
|
138 |
+
"""グレーの壁に置かれた木製のテーブルの上に、茶色のタビーの猫が横たわっている。猫は右を向いており、頭は左を向き、尻尾は体の前に突き出ているように見える。テーブルは木製で、猫の後ろには黒い金属製の脚があり、テーブルの下には小さな緑の植物が置かれる。<EOD|LLM-jp>"""
|
139 |
```
|
140 |
|
141 |
## Training dataset
|