oluwatosin adewumi commited on
Commit
f88ff5e
1 Parent(s): 107b194

README added

Browse files
Files changed (1) hide show
  1. README.md +48 -0
README.md ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png
3
+ language:
4
+ - en
5
+ license: cc-by-4.0
6
+ tags:
7
+ - conversational
8
+ - transformers
9
+ datasets:
10
+ - multi_woz_v22 and PIE-English idioms corpus
11
+ metrics:
12
+ - perplexity
13
+ widget:
14
+ - text: "Does that mean Jane is off the hook?"
15
+ ---
16
+
17
+ ## DialoGPT_MWOZ_Idioms
18
+ This is a fine-tuned model of DialoGPT (medium)-MultiWOZ on the PIE-English idioms corpus. It is intended to be used as an idiom-aware conversational system.
19
+ The dataset it's trained on is limited in scope, as it covers only 10 classes of idioms ( metaphor, simile, euphemism, parallelism, personification, oxymoron, paradox, hyperbole, irony and literal).
20
+ The perplexity achieved on the test and validation sets are 160.9 and 160.46, respectively. More information about the original pre-trained model can be found [here](https://huggingface.co/tosin/dialogpt_mwoz)
21
+ * Generation example from an interactive environment:
22
+ |Role | Response |
23
+ |---------|------------|
24
+ |User | remind her to take it off the hook. |
25
+ |Bot | the bookie took it on the nod |
26
+ |User | A lengthy break is in order ; so make sure you keep your nose clean |
27
+ |Bot | they are under a cloud because of fears about US President's wife Hillary Clinton |
28
+ |User | Some families breed like rabbits and send us all their male heirs |
29
+ |Bot | he was out for the count |
30
+ #Please find the information about preprocessing, training and full details of the DialoGPT in the [original DialoGPT repository](https://github.com/microsoft/DialoGPT)
31
+ ### How to use
32
+ Now we are ready to try out how the model works as a chatting partner!
33
+ ```python
34
+ from transformers import AutoModelForCausalLM, AutoTokenizer
35
+ import torch
36
+ tokenizer = AutoTokenizer.from_pretrained("tosin/dialogpt_mwoz_idioms")
37
+ model = AutoModelForCausalLM.from_pretrained("tosin/dialogpt_mwoz_idioms")
38
+ # Let's chat for 5 lines
39
+ for step in range(5):
40
+ # encode the new user input, add the eos_token and return a tensor in Pytorch
41
+ new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
42
+ # append the new user input tokens to the chat history
43
+ bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
44
+ # generated a response while limiting the total chat history to 1000 tokens,
45
+ chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
46
+ # pretty print last ouput tokens from bot
47
+ print("DialoGPT_MWOZ_Bot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
48
+