from underthesea import sent_tokenize def substring(w, ls): for w2 in ls: if w != w2 and w in w2: return True return False def get_ner_phrases(sent_ner_result): ner_list = [] current_ner = [sent_ner_result[0]["word"]] current_idx = sent_ner_result[0]["index"] for i in range(1, len(sent_ner_result)): if sent_ner_result[i]["index"] == current_idx + 1: current_ner.append(sent_ner_result[i]["word"]) else: ner_list.append((' '.join(current_ner), sent_ner_result[i - 1]['entity'])) current_ner = [sent_ner_result[i]["word"]] current_idx = sent_ner_result[i]["index"] ner_list.append((' '.join(current_ner), sent_ner_result[len(sent_ner_result) - 1]['entity'])) return ner_list def get_named_entities(nlp, doc): ner_lists = [] for sent in sent_tokenize(doc): sent_ner_result = nlp(sent) if len(sent_ner_result) > 0: ner_lists += get_ner_phrases(sent_ner_result) # print(ner_lists) ner_list_non_dup = [] for (entity, ner_type) in ner_lists: if entity not in ner_list_non_dup and ner_type.startswith('I'): ner_list_non_dup.append(entity) ner_list_final = [w.replace(" ##", "") for w in ner_list_non_dup if not substring(w, ner_list_non_dup)] return ner_list_final