---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4068
- loss:MultipleNegativesRankingLoss
base_model: distilbert/distilroberta-base
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Proficiency in C# scripting is essential for creating custom scripts
and extensions to enhance ABBYY FlexiCapture and ABBYY Vantage functionality.
sentences:
- Successfully presented financial reports to executives
- Worked on improving user interfaces using HTML and CSS
- Created extensions to optimize data capture processes
- source_sentence: Knowledgeable in supporting Cyber Security Operations and investigation
requests.
sentences:
- Assisted in incident response for security breaches
- Coordinated communication strategies for corporate events
- Developed mobile applications for e-commerce
- source_sentence: Bachelor’s degree in Human Resources, Business Administration,
Finance or related field
sentences:
- prepared monthly production reports for management meetings
- Bachelor of Science in Human Resources Management
- Completed a course in Marketing Strategy
- source_sentence: A strong interest in photography or videography is necessary for
this role.
sentences:
- produced short promotional videos for social media platforms
- Conducted training sessions for new software implementations
- conducted market research on competitor strategies
- source_sentence: Ability to work both independently and as part of a collaborative
team.
sentences:
- Worked in isolation and avoided team interactions
- Participated in team meetings and contributed to group problem-solving
- Authored clear documentation for complex data processes
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on distilbert/distilroberta-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.7992382726015851
name: Pearson Cosine
- type: spearman_cosine
value: 0.8047353015653143
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7959439027738936
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7940263609217374
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7957522013263527
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7941887779903888
name: Spearman Euclidean
- type: pearson_dot
value: 0.5317541949973523
name: Pearson Dot
- type: spearman_dot
value: 0.5390259111701268
name: Spearman Dot
- type: pearson_max
value: 0.7992382726015851
name: Pearson Max
- type: spearman_max
value: 0.8047353015653143
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.7508747335014652
name: Pearson Cosine
- type: spearman_cosine
value: 0.7343818974365368
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7429083946804279
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7262987823076023
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7419896002102524
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7250585009844766
name: Spearman Euclidean
- type: pearson_dot
value: 0.4701047985009806
name: Pearson Dot
- type: spearman_dot
value: 0.47577938055391156
name: Spearman Dot
- type: pearson_max
value: 0.7508747335014652
name: Pearson Max
- type: spearman_max
value: 0.7343818974365368
name: Spearman Max
---
# SentenceTransformer based on distilbert/distilroberta-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("trbeers/distilroberta-base-nli-v0.1")
# Run inference
sentences = [
'Ability to work both independently and as part of a collaborative team.',
'Participated in team meetings and contributed to group problem-solving',
'Worked in isolation and avoided team interactions',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7992 |
| **spearman_cosine** | **0.8047** |
| pearson_manhattan | 0.7959 |
| spearman_manhattan | 0.794 |
| pearson_euclidean | 0.7958 |
| spearman_euclidean | 0.7942 |
| pearson_dot | 0.5318 |
| spearman_dot | 0.539 |
| pearson_max | 0.7992 |
| spearman_max | 0.8047 |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7509 |
| **spearman_cosine** | **0.7344** |
| pearson_manhattan | 0.7429 |
| spearman_manhattan | 0.7263 |
| pearson_euclidean | 0.742 |
| spearman_euclidean | 0.7251 |
| pearson_dot | 0.4701 |
| spearman_dot | 0.4758 |
| pearson_max | 0.7509 |
| spearman_max | 0.7344 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 4,068 training samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details |
Experience in managing meetings with program participants and tracking action items effectively.
| Coordinated project meetings and followed up on team tasks
| Assisted in developing marketing strategies
|
| Ability to replace faulty electrical components with precision.
| Conducted detailed inspections of wiring and circuits
| Handled plumbing repairs and maintenance tasks
|
| Knowledge of loss prevention, security, and safety protocols.
| Implemented safety measures in warehouse operations
| Worked as a sales associate
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 1,018 evaluation samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | string | string |
| details | The ability to complete a background investigation and drug screen is necessary for employment.
| Conducted thorough background investigations for security personnel
| Managed scheduling for office staff
|
| Ability to create compelling business cases to drive organizational change.
| Developed comprehensive business cases that successfully led to strategic organizational changes
| Managed project timelines and budgets for software development projects
|
| Proven understanding of ERP concepts and their applications in business.
| Conducted workshops on business process improvement
| Managed social media accounts
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `batch_sampler`: no_duplicates
#### All Hyperparameters