--- license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - trl - dpo - generated_from_trainer model-index: - name: MedQA_L3_450steps_1e7rate_03beta_CSFTDPO results: [] --- # MedQA_L3_450steps_1e7rate_03beta_CSFTDPO This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6479 - Rewards/chosen: 0.1876 - Rewards/rejected: 0.0690 - Rewards/accuracies: 0.6637 - Rewards/margins: 0.1186 - Logps/rejected: -21.0864 - Logps/chosen: -17.5973 - Logits/rejected: -0.9362 - Logits/chosen: -0.9357 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 450 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6938 | 0.0489 | 50 | 0.6934 | 0.0041 | 0.0042 | 0.5099 | -0.0000 | -21.3026 | -18.2088 | -0.9262 | -0.9257 | | 0.6807 | 0.0977 | 100 | 0.6781 | 0.1130 | 0.0788 | 0.6110 | 0.0343 | -21.0540 | -17.8459 | -0.9280 | -0.9275 | | 0.6689 | 0.1466 | 150 | 0.6622 | 0.1706 | 0.0922 | 0.6286 | 0.0784 | -21.0091 | -17.6540 | -0.9313 | -0.9308 | | 0.6589 | 0.1954 | 200 | 0.6569 | 0.1748 | 0.0827 | 0.6462 | 0.0921 | -21.0408 | -17.6401 | -0.9339 | -0.9334 | | 0.6798 | 0.2443 | 250 | 0.6507 | 0.1854 | 0.0751 | 0.6505 | 0.1103 | -21.0663 | -17.6047 | -0.9352 | -0.9347 | | 0.6402 | 0.2931 | 300 | 0.6482 | 0.1927 | 0.0761 | 0.6725 | 0.1166 | -21.0627 | -17.5802 | -0.9358 | -0.9352 | | 0.7088 | 0.3420 | 350 | 0.6481 | 0.1883 | 0.0698 | 0.6637 | 0.1185 | -21.0838 | -17.5951 | -0.9357 | -0.9352 | | 0.6301 | 0.3908 | 400 | 0.6487 | 0.1878 | 0.0712 | 0.6549 | 0.1166 | -21.0792 | -17.5965 | -0.9361 | -0.9356 | | 0.6454 | 0.4397 | 450 | 0.6479 | 0.1876 | 0.0690 | 0.6637 | 0.1186 | -21.0864 | -17.5973 | -0.9362 | -0.9357 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.0.0+cu117 - Datasets 2.19.1 - Tokenizers 0.19.1