File size: 3,542 Bytes
e33fdfa ff37341 e33fdfa ff37341 e33fdfa ff37341 e33fdfa ff37341 e33fdfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
---
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: UTI_L3_1000steps_1e7rate_SFT
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# UTI_L3_1000steps_1e7rate_SFT
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6055
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 2.4485 | 0.3333 | 25 | 2.4666 |
| 2.4645 | 0.6667 | 50 | 2.4522 |
| 2.452 | 1.0 | 75 | 2.4164 |
| 2.391 | 1.3333 | 100 | 2.3529 |
| 2.2816 | 1.6667 | 125 | 2.2866 |
| 2.175 | 2.0 | 150 | 2.2255 |
| 2.2168 | 2.3333 | 175 | 2.1683 |
| 2.1574 | 2.6667 | 200 | 2.1166 |
| 2.1107 | 3.0 | 225 | 2.0679 |
| 2.0126 | 3.3333 | 250 | 2.0229 |
| 1.9353 | 3.6667 | 275 | 1.9810 |
| 1.9552 | 4.0 | 300 | 1.9445 |
| 1.9759 | 4.3333 | 325 | 1.9100 |
| 1.8721 | 4.6667 | 350 | 1.8773 |
| 1.8928 | 5.0 | 375 | 1.8491 |
| 1.8331 | 5.3333 | 400 | 1.8236 |
| 1.8221 | 5.6667 | 425 | 1.7980 |
| 1.7615 | 6.0 | 450 | 1.7762 |
| 1.7701 | 6.3333 | 475 | 1.7562 |
| 1.7034 | 6.6667 | 500 | 1.7327 |
| 1.7471 | 7.0 | 525 | 1.7064 |
| 1.7317 | 7.3333 | 550 | 1.6831 |
| 1.6897 | 7.6667 | 575 | 1.6645 |
| 1.6452 | 8.0 | 600 | 1.6476 |
| 1.6675 | 8.3333 | 625 | 1.6327 |
| 1.569 | 8.6667 | 650 | 1.6238 |
| 1.705 | 9.0 | 675 | 1.6163 |
| 1.6025 | 9.3333 | 700 | 1.6121 |
| 1.6224 | 9.6667 | 725 | 1.6083 |
| 1.6976 | 10.0 | 750 | 1.6074 |
| 1.6031 | 10.3333 | 775 | 1.6059 |
| 1.5703 | 10.6667 | 800 | 1.6046 |
| 1.6563 | 11.0 | 825 | 1.6055 |
| 1.6464 | 11.3333 | 850 | 1.6059 |
| 1.6075 | 11.6667 | 875 | 1.6055 |
| 1.6453 | 12.0 | 900 | 1.6057 |
| 1.5754 | 12.3333 | 925 | 1.6054 |
| 1.5962 | 12.6667 | 950 | 1.6055 |
| 1.6333 | 13.0 | 975 | 1.6055 |
| 1.6086 | 13.3333 | 1000 | 1.6055 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.0.0+cu117
- Datasets 2.19.2
- Tokenizers 0.19.1
|