tsavage68's picture
End of training
4247f54 verified
metadata
license: llama3
base_model: tsavage68/UTI_L3_1000steps_1e5rate_SFT
tags:
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: UTI_L3_175steps_1e7rate_03beta_CSFTDPO
    results: []

UTI_L3_175steps_1e7rate_03beta_CSFTDPO

This model is a fine-tuned version of tsavage68/UTI_L3_1000steps_1e5rate_SFT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3086
  • Rewards/chosen: 0.2238
  • Rewards/rejected: -0.9996
  • Rewards/accuracies: 0.9900
  • Rewards/margins: 1.2234
  • Logps/rejected: -66.5267
  • Logps/chosen: -31.7329
  • Logits/rejected: -1.3243
  • Logits/chosen: -1.3093

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-07
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 175

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6945 0.3333 25 0.6909 -0.0005 -0.0056 0.4900 0.0051 -63.2133 -32.4808 -1.3230 -1.3079
0.6631 0.6667 50 0.6538 0.0144 -0.0676 0.8500 0.0820 -63.4201 -32.4310 -1.3232 -1.3082
0.6008 1.0 75 0.5691 0.0482 -0.2288 0.9600 0.2770 -63.9573 -32.3183 -1.3233 -1.3082
0.4499 1.3333 100 0.4399 0.1150 -0.5411 0.9600 0.6561 -64.9983 -32.0957 -1.3238 -1.3088
0.3285 1.6667 125 0.3355 0.1971 -0.8933 0.9900 1.0904 -66.1723 -31.8220 -1.3241 -1.3092
0.3053 2.0 150 0.3088 0.2246 -1.0014 0.9900 1.2260 -66.5327 -31.7303 -1.3242 -1.3092
0.2456 2.3333 175 0.3086 0.2238 -0.9996 0.9900 1.2234 -66.5267 -31.7329 -1.3243 -1.3093

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.0.0+cu117
  • Datasets 2.19.2
  • Tokenizers 0.19.1