--- license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.2 tags: - trl - sft - generated_from_trainer model-index: - name: UTI_M2_1000steps_1e6rate_SFT results: [] --- # UTI_M2_1000steps_1e6rate_SFT This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7960 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 2.2167 | 0.3333 | 25 | 1.1865 | | 0.9806 | 0.6667 | 50 | 0.9618 | | 0.936 | 1.0 | 75 | 0.9371 | | 0.8294 | 1.3333 | 100 | 0.9512 | | 0.8273 | 1.6667 | 125 | 0.9369 | | 0.7851 | 2.0 | 150 | 0.9036 | | 0.5263 | 2.3333 | 175 | 0.9990 | | 0.5512 | 2.6667 | 200 | 0.9589 | | 0.5272 | 3.0 | 225 | 0.9576 | | 0.2888 | 3.3333 | 250 | 1.1371 | | 0.2968 | 3.6667 | 275 | 1.1164 | | 0.3381 | 4.0 | 300 | 1.1144 | | 0.1802 | 4.3333 | 325 | 1.1697 | | 0.2025 | 4.6667 | 350 | 1.1946 | | 0.2273 | 5.0 | 375 | 1.2614 | | 0.1417 | 5.3333 | 400 | 1.3260 | | 0.1524 | 5.6667 | 425 | 1.3343 | | 0.136 | 6.0 | 450 | 1.3735 | | 0.117 | 6.3333 | 475 | 1.3843 | | 0.1284 | 6.6667 | 500 | 1.3742 | | 0.1172 | 7.0 | 525 | 1.4114 | | 0.0905 | 7.3333 | 550 | 1.5000 | | 0.1027 | 7.6667 | 575 | 1.5142 | | 0.097 | 8.0 | 600 | 1.4912 | | 0.0837 | 8.3333 | 625 | 1.5974 | | 0.0832 | 8.6667 | 650 | 1.6185 | | 0.0781 | 9.0 | 675 | 1.6203 | | 0.0698 | 9.3333 | 700 | 1.6833 | | 0.0722 | 9.6667 | 725 | 1.6960 | | 0.0681 | 10.0 | 750 | 1.7139 | | 0.0635 | 10.3333 | 775 | 1.7732 | | 0.0654 | 10.6667 | 800 | 1.7704 | | 0.0663 | 11.0 | 825 | 1.7647 | | 0.0604 | 11.3333 | 850 | 1.7840 | | 0.0628 | 11.6667 | 875 | 1.7916 | | 0.0627 | 12.0 | 900 | 1.7947 | | 0.061 | 12.3333 | 925 | 1.7962 | | 0.062 | 12.6667 | 950 | 1.7967 | | 0.0607 | 13.0 | 975 | 1.7960 | | 0.0605 | 13.3333 | 1000 | 1.7960 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.0.0+cu117 - Datasets 2.19.2 - Tokenizers 0.19.1