|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import soundfile as sf |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from peft import LoraConfig, TaskType, get_peft_model |
|
from transformers import ( |
|
WhisperFeatureExtractor, |
|
WhisperModel, |
|
LlamaForCausalLM, |
|
LlamaTokenizer |
|
) |
|
import librosa |
|
from beats.BEATs import BEATsConfig, BEATs |
|
from qformer.Qformer import BertConfig, BertLMHeadModel |
|
|
|
class SALMONN(nn.Module): |
|
def __init__( |
|
self, |
|
ckpt, |
|
whisper_path, |
|
beats_path, |
|
vicuna_path, |
|
speech_qformer_token_num=1, |
|
speech_qformer_layer=2, |
|
lora=True, |
|
lora_alpha=32, |
|
lora_rank=8, |
|
lora_dropout=0.1, |
|
second_per_frame=0.333333, |
|
second_stride=0.333333, |
|
low_resource=False |
|
): |
|
|
|
super().__init__() |
|
|
|
|
|
self.feature_extractor = WhisperFeatureExtractor.from_pretrained(whisper_path) |
|
|
|
|
|
self.speech_encoder = WhisperModel.from_pretrained(whisper_path).encoder |
|
self.ln_speech = nn.LayerNorm(self.speech_encoder.config.d_model) |
|
|
|
|
|
self.beats_ckpt = beats_path |
|
beats_checkpoint = torch.load(self.beats_ckpt, map_location='cpu') |
|
beats_cfg = BEATsConfig(beats_checkpoint['cfg']) |
|
beats = BEATs(beats_cfg) |
|
beats.load_state_dict(beats_checkpoint['model']) |
|
self.beats = beats |
|
self.ln_audio = nn.LayerNorm(self.beats.cfg.encoder_embed_dim) |
|
for name, param in self.beats.named_parameters(): |
|
param.requires_grad = False |
|
self.beats.eval() |
|
|
|
|
|
self.speech_Qformer, self.speech_query_tokens = self.init_speech_Qformer( |
|
speech_qformer_token_num, |
|
self.speech_encoder.config.d_model + self.beats.cfg.encoder_embed_dim, |
|
speech_qformer_layer, |
|
) |
|
self.second_per_frame = second_per_frame |
|
self.second_stride = second_stride |
|
|
|
|
|
if not low_resource: |
|
self.llama_model = LlamaForCausalLM.from_pretrained( |
|
vicuna_path, |
|
torch_dtype=torch.float16, |
|
) |
|
else: |
|
self.llama_model = LlamaForCausalLM.from_pretrained( |
|
vicuna_path, |
|
torch_dtype=torch.float16, |
|
load_in_8bit=True, |
|
device_map={'': 0} |
|
) |
|
|
|
|
|
self.lora = lora |
|
if lora: |
|
target_modules = None |
|
self.peft_config = LoraConfig( |
|
task_type=TaskType.CAUSAL_LM, |
|
inference_mode=True, |
|
r=lora_rank, |
|
lora_alpha=lora_alpha, |
|
lora_dropout=lora_dropout, |
|
target_modules=target_modules, |
|
) |
|
self.llama_model = get_peft_model(self.llama_model, self.peft_config) |
|
|
|
|
|
self.llama_tokenizer = LlamaTokenizer.from_pretrained(vicuna_path, use_fast=False) |
|
self.llama_tokenizer.add_special_tokens({'pad_token': '[PAD]'}) |
|
self.llama_tokenizer.padding_side = "right" |
|
|
|
|
|
self.speech_llama_proj = nn.Linear( |
|
self.speech_Qformer.config.hidden_size, self.llama_model.config.hidden_size) |
|
|
|
|
|
ckpt_dict = torch.load(ckpt)['model'] |
|
self.load_state_dict(ckpt_dict, strict=False) |
|
|
|
def generate( |
|
self, |
|
wav_path, |
|
prompt, |
|
prompt_pattern="USER: <Speech><SpeechHere></Speech> {}\nASSISTANT:", |
|
device='cuda:0', |
|
max_length=200, |
|
num_beams=4, |
|
do_sample=True, |
|
min_length=1, |
|
top_p=0.9, |
|
repetition_penalty=1.0, |
|
length_penalty=1.0, |
|
temperature=1.0, |
|
): |
|
|
|
wav, sr = sf.read(wav_path) |
|
if len(wav.shape) == 2: |
|
wav = wav[:, 0] |
|
if len(wav) > 30 * sr: |
|
wav = wav[: 30 * sr] |
|
if sr != 16000: |
|
wav = librosa.resample(wav, orig_sr=sr, target_sr=16000, res_type="fft") |
|
|
|
|
|
spectrogram = self.feature_extractor(wav, return_tensors="pt", sampling_rate=16000).input_features.to(device) |
|
speech_embeds = self.speech_encoder(spectrogram, return_dict=True).last_hidden_state |
|
|
|
|
|
raw_wav = torch.from_numpy(wav).to(device).unsqueeze(0) |
|
audio_padding_mask = torch.zeros(raw_wav.shape, device=device).bool() |
|
audio_embeds, _ = self.beats.extract_features(raw_wav, padding_mask=audio_padding_mask, feature_only=True) |
|
|
|
|
|
speech_embeds = self.ln_speech(speech_embeds) |
|
audio_embeds = self.ln_audio(audio_embeds) |
|
audio_embeds = F.pad(audio_embeds, (0, 0, 0, speech_embeds.size(1) - audio_embeds.size(1))) |
|
speech_embeds = torch.cat([speech_embeds, audio_embeds], dim=-1) |
|
|
|
|
|
B, T, C = speech_embeds.shape |
|
kernel = round(T * self.second_per_frame / 30.0) |
|
stride = round(T * self.second_stride / 30.0) |
|
kernel = (1, kernel) |
|
stride = (1, stride) |
|
speech_embeds_tr = speech_embeds.transpose(1, 2).unsqueeze(2) |
|
speech_embeds_overlap = F.unfold(speech_embeds_tr, kernel_size=kernel, dilation=1, padding=0, stride=stride) |
|
_, _, L = speech_embeds_overlap.shape |
|
speech_embeds_overlap = speech_embeds_overlap.view(B, -1, kernel[1], L) |
|
speech_embeds_overlap = torch.permute(speech_embeds_overlap, [0, 3, 2, 1]) |
|
speech_embeds = speech_embeds_overlap.reshape(-1, kernel[1], C) |
|
speech_atts = torch.ones(speech_embeds.size()[:-1], dtype=torch.long, device=speech_embeds.device) |
|
|
|
|
|
query_tokens = self.speech_query_tokens.expand(speech_embeds.shape[0], -1, -1) |
|
query_output = self.speech_Qformer.bert( |
|
query_embeds=query_tokens, |
|
encoder_hidden_states=speech_embeds, |
|
encoder_attention_mask=speech_atts, |
|
return_dict=True, |
|
) |
|
speech_embeds = self.speech_llama_proj(query_output.last_hidden_state) |
|
speech_embeds = speech_embeds.view(B, -1, speech_embeds.size(2)).contiguous() |
|
speech_atts = torch.ones(speech_embeds.size()[:-1], dtype=torch.long).to(speech_embeds.device) |
|
|
|
|
|
embed_tokens = self.llama_model.model.model.embed_tokens if self.lora else self.llama_model.model.embed_tokens |
|
prompt_left, prompts_right = prompt_pattern.format(prompt).split('<SpeechHere>') |
|
prompt_left_ids = self.llama_tokenizer( |
|
prompt_left, |
|
return_tensors="pt", |
|
add_special_tokens=False |
|
).to(speech_embeds.device).input_ids |
|
prompt_left_embeds = embed_tokens(prompt_left_ids) |
|
prompt_right_ids = self.llama_tokenizer( |
|
prompts_right, |
|
return_tensors="pt", |
|
add_special_tokens=False |
|
).to(speech_embeds.device).input_ids |
|
prompt_right_embeds = embed_tokens(prompt_right_ids) |
|
|
|
bos_embeds = self.llama_model.model.embed_tokens( |
|
torch.ones( |
|
[1, 1], |
|
dtype=torch.long, |
|
device=device, |
|
) * self.llama_tokenizer.bos_token_id |
|
) if not self.lora else self.llama_model.model.model.embed_tokens( |
|
torch.ones( |
|
[1, 1], |
|
dtype=torch.long, |
|
device=device, |
|
) * self.llama_tokenizer.bos_token_id |
|
) |
|
|
|
embeds = torch.cat([bos_embeds, prompt_left_embeds, speech_embeds, prompt_right_embeds], dim=1) |
|
atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device) |
|
|
|
|
|
output = self.llama_model.generate( |
|
inputs_embeds=embeds, |
|
max_length=max_length, |
|
num_beams=num_beams, |
|
do_sample=do_sample, |
|
min_length=min_length, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
length_penalty=length_penalty, |
|
temperature=temperature, |
|
attention_mask=atts, |
|
bos_token_id=self.llama_tokenizer.bos_token_id, |
|
eos_token_id=self.llama_tokenizer.eos_token_id, |
|
pad_token_id=self.llama_tokenizer.pad_token_id |
|
) |
|
|
|
output_text = self.llama_tokenizer.batch_decode(output, add_special_tokens=False, skip_special_tokens=True) |
|
|
|
return output_text |
|
|
|
def init_speech_Qformer(self, num_query_token, speech_width, num_hidden_layers=2): |
|
encoder_config = BertConfig() |
|
encoder_config.num_hidden_layers = num_hidden_layers |
|
encoder_config.encoder_width = speech_width |
|
encoder_config.add_cross_attention = True |
|
encoder_config.cross_attention_freq = 1 |
|
encoder_config.query_length = num_query_token |
|
Qformer = BertLMHeadModel(config=encoder_config) |
|
query_tokens = nn.Parameter( |
|
torch.zeros(1, num_query_token, encoder_config.hidden_size) |
|
) |
|
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range) |
|
return Qformer, query_tokens |
|
|