File size: 6,623 Bytes
f205cff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07195d9
9a6e984
 
 
 
07195d9
9a6e984
 
 
07195d9
9a6e984
 
 
07195d9
9a6e984
 
 
07195d9
9a6e984
 
 
 
f205cff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a6e984
f205cff
 
 
07195d9
 
9a6e984
 
 
 
 
 
 
 
 
 
f205cff
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
model-index:
- name: legal_deberta
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# legal_deberta

This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2674
- Law Precision: 0.6932
- Law Recall: 0.8133
- Law F1: 0.7485
- Law Number: 75
- Violated by Precision: 0.8684
- Violated by Recall: 0.88
- Violated by F1: 0.8742
- Violated by Number: 75
- Violated on Precision: 0.5882
- Violated on Recall: 0.6667
- Violated on F1: 0.625
- Violated on Number: 75
- Violation Precision: 0.5287
- Violation Recall: 0.6429
- Violation F1: 0.5802
- Violation Number: 616
- Overall Precision: 0.5741
- Overall Recall: 0.6813
- Overall F1: 0.6232
- Overall Accuracy: 0.9461

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Law Precision | Law Recall | Law F1 | Law Number | Violated by Precision | Violated by Recall | Violated by F1 | Violated by Number | Violated on Precision | Violated on Recall | Violated on F1 | Violated on Number | Violation Precision | Violation Recall | Violation F1 | Violation Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------:|:----------:|:------:|:----------:|:---------------------:|:------------------:|:--------------:|:------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.9748        | 1.0   | 45   | 1.1555          | 0.0           | 0.0        | 0.0    | 75         | 0.0                   | 0.0                | 0.0            | 75                 | 0.0                   | 0.0                | 0.0            | 75                 | 0.0                 | 0.0              | 0.0          | 616              | 0.0               | 0.0            | 0.0        | 0.7437           |
| 0.4536        | 2.0   | 90   | 0.3670          | 0.0           | 0.0        | 0.0    | 75         | 0.0                   | 0.0                | 0.0            | 75                 | 0.0                   | 0.0                | 0.0            | 75                 | 0.1704              | 0.2955           | 0.2162       | 616              | 0.1704            | 0.2164         | 0.1907     | 0.8901           |
| 0.2704        | 3.0   | 135  | 0.2199          | 0.7059        | 0.64       | 0.6713 | 75         | 0.3095                | 0.1733             | 0.2222         | 75                 | 0.0909                | 0.0133             | 0.0233         | 75                 | 0.3291              | 0.5097           | 0.4000       | 616              | 0.3498            | 0.4471         | 0.3925     | 0.9277           |
| 0.1475        | 4.0   | 180  | 0.1959          | 0.6263        | 0.8267     | 0.7126 | 75         | 0.9153                | 0.72               | 0.8060         | 75                 | 0.3182                | 0.3733             | 0.3436         | 75                 | 0.4641              | 0.5974           | 0.5224       | 616              | 0.4928            | 0.6088         | 0.5447     | 0.9407           |
| 0.0879        | 5.0   | 225  | 0.2038          | 0.5909        | 0.8667     | 0.7027 | 75         | 0.7590                | 0.84               | 0.7975         | 75                 | 0.3982                | 0.6                | 0.4787         | 75                 | 0.4692              | 0.6055           | 0.5287       | 616              | 0.4959            | 0.6492         | 0.5623     | 0.9434           |
| 0.0499        | 6.0   | 270  | 0.2466          | 0.5913        | 0.9067     | 0.7158 | 75         | 0.7674                | 0.88               | 0.8199         | 75                 | 0.4412                | 0.6                | 0.5085         | 75                 | 0.4832              | 0.6071           | 0.5381       | 616              | 0.5135            | 0.6576         | 0.5766     | 0.9425           |
| 0.0291        | 7.0   | 315  | 0.2980          | 0.5755        | 0.8133     | 0.6740 | 75         | 0.7976                | 0.8933             | 0.8428         | 75                 | 0.3802                | 0.6133             | 0.4694         | 75                 | 0.4929              | 0.5617           | 0.5250       | 616              | 0.5133            | 0.6183         | 0.5609     | 0.9389           |
| 0.0341        | 8.0   | 360  | 0.2660          | 0.5739        | 0.88       | 0.6947 | 75         | 0.8193                | 0.9067             | 0.8608         | 75                 | 0.48                  | 0.64               | 0.5486         | 75                 | 0.4800              | 0.6445           | 0.5502       | 616              | 0.5147            | 0.6885         | 0.5890     | 0.9366           |
| 0.0228        | 9.0   | 405  | 0.3186          | 0.3505        | 0.9067     | 0.5056 | 75         | 0.6126                | 0.9067             | 0.7312         | 75                 | 0.3216                | 0.7333             | 0.4472         | 75                 | 0.4365              | 0.5519           | 0.4875       | 616              | 0.4231            | 0.6314         | 0.5067     | 0.9301           |
| 0.0173        | 10.0  | 450  | 0.2674          | 0.6932        | 0.8133     | 0.7485 | 75         | 0.8684                | 0.88               | 0.8742         | 75                 | 0.5882                | 0.6667             | 0.625          | 75                 | 0.5287              | 0.6429           | 0.5802       | 616              | 0.5741            | 0.6813         | 0.6232     | 0.9461           |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.4.0+cu121
- Datasets 2.15.0
- Tokenizers 0.13.3