--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer model-index: - name: legal_deberta results: [] --- # legal_deberta This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4214 - Law Precision: 0.6449 - Law Recall: 0.92 - Law F1: 0.7582 - Law Number: 75 - Violated by Precision: 0.8625 - Violated by Recall: 0.92 - Violated by F1: 0.8903 - Violated by Number: 75 - Violated on Precision: 0.625 - Violated on Recall: 0.7333 - Violated on F1: 0.6748 - Violated on Number: 75 - Violation Precision: 0.5683 - Violation Recall: 0.6347 - Violation F1: 0.5997 - Violation Number: 616 - Overall Precision: 0.6064 - Overall Recall: 0.6944 - Overall F1: 0.6475 - Overall Accuracy: 0.9475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Law Precision | Law Recall | Law F1 | Law Number | Violated by Precision | Violated by Recall | Violated by F1 | Violated by Number | Violated on Precision | Violated on Recall | Violated on F1 | Violated on Number | Violation Precision | Violation Recall | Violation F1 | Violation Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------:|:----------:|:------:|:----------:|:---------------------:|:------------------:|:--------------:|:------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.0391 | 11.11 | 500 | 0.3372 | 0.5652 | 0.8667 | 0.6842 | 75 | 0.8023 | 0.92 | 0.8571 | 75 | 0.6042 | 0.7733 | 0.6784 | 75 | 0.4690 | 0.6640 | 0.5497 | 616 | 0.5141 | 0.7146 | 0.5980 | 0.9283 | | 0.0036 | 22.22 | 1000 | 0.4019 | 0.5667 | 0.9067 | 0.6974 | 75 | 0.7955 | 0.9333 | 0.8589 | 75 | 0.5455 | 0.72 | 0.6207 | 75 | 0.5681 | 0.6429 | 0.6032 | 616 | 0.5857 | 0.6992 | 0.6374 | 0.9443 | | 0.0002 | 33.33 | 1500 | 0.3958 | 0.6 | 0.92 | 0.7263 | 75 | 0.8023 | 0.92 | 0.8571 | 75 | 0.5556 | 0.7333 | 0.6322 | 75 | 0.5476 | 0.6347 | 0.5880 | 616 | 0.5759 | 0.6944 | 0.6296 | 0.9463 | | 0.0001 | 44.44 | 2000 | 0.4214 | 0.6449 | 0.92 | 0.7582 | 75 | 0.8625 | 0.92 | 0.8903 | 75 | 0.625 | 0.7333 | 0.6748 | 75 | 0.5683 | 0.6347 | 0.5997 | 616 | 0.6064 | 0.6944 | 0.6475 | 0.9475 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.4.0+cu121 - Datasets 2.15.0 - Tokenizers 0.13.3