File size: 1,727 Bytes
2cd4bde
 
e6f6241
 
2cd4bde
 
 
e6f6241
2cd4bde
 
 
 
 
 
 
 
 
 
 
 
 
e6f6241
2cd4bde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
base_model: barc0/Llama-3.1-ARC-Potpourri-Transduction-8B
datasets:
- tttx/problem12_data
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: problem12_model_aug_10
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# problem12_model_aug_10

This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Potpourri-Transduction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Transduction-8B) on the tttx/problem12_data dataset.
It achieves the following results on the evaluation set:
- Loss: nan

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0001        | 1.0   | 20   | nan             |
| 0.0008        | 2.0   | 40   | nan             |


### Framework versions

- PEFT 0.13.2
- Transformers 4.47.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3