tugrulhkarabulut
commited on
Commit
•
3385773
1
Parent(s):
4a8ed4b
init
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- nomansland.zip +3 -0
- nomansland/_stable_baselines3_version +1 -0
- nomansland/data +94 -0
- nomansland/policy.optimizer.pth +3 -0
- nomansland/policy.pth +3 -0
- nomansland/pytorch_variables.pth +3 -0
- nomansland/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 175.26 +/- 80.01
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1b96d77d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1b96d77dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1b96d77e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1b96d77ef0>", "_build": "<function ActorCriticPolicy._build at 0x7f1b96d77f80>", "forward": "<function ActorCriticPolicy.forward at 0x7f1b96d7f050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1b96d7f0e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1b96d7f170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1b96d7f200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1b96d7f290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1b96d7f320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1b96dc8780>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652964987.0113246, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABswrt7cLq6gq0dPCTUeLxsowA8vdxaPQAAgD8AAIA/s8aovY9SM7ruTrS6DVbdtUdTILubvNA5AACAPwAAgD8matG9hcONuUsPFrsxsEW2H7+wOtD6LToAAIA/AACAPyCvYj7IVJg7JvhMOqtJwTfpfzw96oZsuQAAgD8AAIA/gGdGvfb0HbquLxs5P3JPNXfIu7nSLTK4AACAPwAAgD/NJio99hRJuobC5rsO0kU4g0CPugPb+zYAAIA/AACAP5rpkzzhmKO6ws6iuzL5Nji+1gk6zSylNwAAgD8AAIA/mllCvhezbD/iCbW92fi0vmJLPr5a0dW8AAAAAAAAAAAz/Q48SGeJupnBK7wMUTe26jO3uWFupzUAAIA/AACAP2bSS77ctUi8sjuguqoso7hnS7s9BIzBOQAAgD8AAIA/M+eaPa6XszmSxo48nBhiO2duCzsItbq8AAAAAAAAgD/NUxE9j1Itut2PzroPApi1OvAxuxVu7zkAAIA/AACAP3CXfL421Wy8qM0uPoJATr4mHug9Q5QzPwAAgD8AAAAAwziXvr+PWz9Vpuk9cequvvKmEr7SRoQ+AAAAAAAAAADaPN09KUR4unU2ZTtVn4u0o1D6ukJQg7oAAIA/AACAP2bcJ73DjTu6xwIBvLa3JDZ+pzY7u0WWtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/BwfLc7uYUCUhpRSlIwBbJRN6AOMAXSUR0CEYr/mT1TSdX2UKGgGaAloD0MIZhah2AoeP8CUhpRSlGgVS9doFkdAhHfyCFsYVXV9lChoBmgJaA9DCDLjbaVXr2BAlIaUUpRoFU3oA2gWR0CEeIgX/HYIdX2UKGgGaAloD0MI1ZY6yOthRkCUhpRSlGgVTegDaBZHQITT6e05U991fZQoaAZoCWgPQwgVGohlM5FfQJSGlFKUaBVN6ANoFkdAhNVJx3mmtXV9lChoBmgJaA9DCPjj9ssnmzfAlIaUUpRoFUvQaBZHQITd77TDwYt1fZQoaAZoCWgPQwh1kNeDSV0/QJSGlFKUaBVNIAFoFkdAhOsnggow23V9lChoBmgJaA9DCIJXy52ZhFpAlIaUUpRoFU3oA2gWR0CE9r8Sf16FdX2UKGgGaAloD0MISZ2AJsKmM8CUhpRSlGgVS9BoFkdAhPfSIpH7QHV9lChoBmgJaA9DCHNmu0IfzFZAlIaUUpRoFU3oA2gWR0CE+E+rU9ZBdX2UKGgGaAloD0MItTUiGAdrU0CUhpRSlGgVTegDaBZHQIULPR9gF5h1fZQoaAZoCWgPQwgDYDyDBnBgQJSGlFKUaBVN6ANoFkdAhRIlLnLaEnV9lChoBmgJaA9DCDYC8br+d2FAlIaUUpRoFU3oA2gWR0CFEtooNNJwdX2UKGgGaAloD0MI1nCRe7q4XkCUhpRSlGgVTegDaBZHQIUh8gGKQ7t1fZQoaAZoCWgPQwiwrgrUYvpTQJSGlFKUaBVN6ANoFkdAhSTyuIRAbHV9lChoBmgJaA9DCDCd1m1QIyjAlIaUUpRoFUvEaBZHQIUqhkmQbMp1fZQoaAZoCWgPQwjGwDqOH1hDQJSGlFKUaBVN6ANoFkdAhS8c9Oh0yXV9lChoBmgJaA9DCOgWuhKB52FAlIaUUpRoFU3oA2gWR0CFQl6JqIrOdX2UKGgGaAloD0MIS1rxDQVqY0CUhpRSlGgVTegDaBZHQIVJWGIsRQJ1fZQoaAZoCWgPQwjB4QURqSRYQJSGlFKUaBVN6ANoFkdAhUosMqjJuHV9lChoBmgJaA9DCHO6LCY2AVtAlIaUUpRoFU3oA2gWR0CFSwNNrTH9dX2UKGgGaAloD0MISBlxAWh0IUCUhpRSlGgVTTEBaBZHQIV0NXV9Wp91fZQoaAZoCWgPQwjGF+3xQtpZQJSGlFKUaBVN6ANoFkdAhbk3cQAdXHV9lChoBmgJaA9DCEc9RKM7DFxAlIaUUpRoFU3oA2gWR0CFwmmBOHnEdX2UKGgGaAloD0MIFVW/0vmQV0CUhpRSlGgVTegDaBZHQIXPn779AHF1fZQoaAZoCWgPQwjkvP+PE6byP5SGlFKUaBVLvGgWR0CF2ZChvitJdX2UKGgGaAloD0MIzo3pCUsGXUCUhpRSlGgVTegDaBZHQIXam/vfCQ91fZQoaAZoCWgPQwh4eqUsQ0lcQJSGlFKUaBVN6ANoFkdAhdutCqp97XV9lChoBmgJaA9DCBLYnIPnSmBAlIaUUpRoFU3oA2gWR0CF3CA+Y+jedX2UKGgGaAloD0MIdmuZDMdgYECUhpRSlGgVTegDaBZHQIXzAHE/B311fZQoaAZoCWgPQwjNHmgFBqNgQJSGlFKUaBVN6ANoFkdAhfOnIQvpQnV9lChoBmgJaA9DCEOPGD23ECJAlIaUUpRoFUvraBZHQIX9H0h/y5J1fZQoaAZoCWgPQwgicCTQ4J5jQJSGlFKUaBVN6ANoFkdAhgJxXXAdn3V9lChoBmgJaA9DCJI81/fhg2BAlIaUUpRoFU3oA2gWR0CGBWiUxEfDdX2UKGgGaAloD0MICRfyCG4OYkCUhpRSlGgVTegDaBZHQIYKqClJpWV1fZQoaAZoCWgPQwhpjxfSYbxgQJSGlFKUaBVN6ANoFkdAhg6/WlMyrXV9lChoBmgJaA9DCH9Ma9PY/i1AlIaUUpRoFUuFaBZHQIYiDvZyuIR1fZQoaAZoCWgPQwjXhLTGoDhbQJSGlFKUaBVN6ANoFkdAhiaQtapxWHV9lChoBmgJaA9DCKTFGcOcy1dAlIaUUpRoFU3oA2gWR0CGJ00gr6LwdX2UKGgGaAloD0MI3o0FhUGlTkCUhpRSlGgVTegDaBZHQIYoGqioKlZ1fZQoaAZoCWgPQwge39416Ns7QJSGlFKUaBVL4mgWR0CGK28jAzpHdX2UKGgGaAloD0MI+boM/2kNYUCUhpRSlGgVTegDaBZHQIZOY6dUbUB1fZQoaAZoCWgPQwjmApfHmrNHQJSGlFKUaBVNFgFoFkdAhlLlQ/HHWHV9lChoBmgJaA9DCFO0ci8wLFlAlIaUUpRoFU3oA2gWR0CGnp6zmfXgdX2UKGgGaAloD0MIAYi7ehUpX0CUhpRSlGgVTegDaBZHQIas1iSaEzx1fZQoaAZoCWgPQwhAbOnRVBNjQJSGlFKUaBVN6ANoFkdAhrjkkB0ZFXV9lChoBmgJaA9DCJmaBG9IBlZAlIaUUpRoFU3oA2gWR0CGug31jAi3dX2UKGgGaAloD0MIMq8jDll4YECUhpRSlGgVTegDaBZHQIa6m3pfQa91fZQoaAZoCWgPQwjiWBe30YhjQJSGlFKUaBVN6ANoFkdAhtRY51eSjnV9lChoBmgJaA9DCI4Dr5Y7fmFAlIaUUpRoFU3oA2gWR0CG1Qy9EkSmdX2UKGgGaAloD0MIN1SM8zfdM0CUhpRSlGgVS71oFkdAhtnkfcN6PnV9lChoBmgJaA9DCC4B+KdU42NAlIaUUpRoFU3oA2gWR0CG36o86mwadX2UKGgGaAloD0MItqD3xhARV0CUhpRSlGgVTegDaBZHQIblX4Kx9oh1fZQoaAZoCWgPQwh2G9R+a71fQJSGlFKUaBVN6ANoFkdAhugpo9LYgHV9lChoBmgJaA9DCLfte9Rf7F1AlIaUUpRoFU3oA2gWR0CHCcR7qptKdX2UKGgGaAloD0MIeXk6V5QlXUCUhpRSlGgVTegDaBZHQIcPPPeHi3p1fZQoaAZoCWgPQwjf+xu0V1piQJSGlFKUaBVN6ANoFkdAhxAl0xM363V9lChoBmgJaA9DCJolAWpqZTRAlIaUUpRoFUvraBZHQIcQ2M6zVtp1fZQoaAZoCWgPQwijQJ/IkxReQJSGlFKUaBVN6ANoFkdAhxVsBhhH9XV9lChoBmgJaA9DCLO1vkhokGFAlIaUUpRoFU3oA2gWR0CHP1xLCemOdX2UKGgGaAloD0MIbVhTWRSeXECUhpRSlGgVTegDaBZHQIdEcY8+zMR1fZQoaAZoCWgPQwgg09o0NthlQJSGlFKUaBVN6ANoFkdAh5J92Pkq+nV9lChoBmgJaA9DCDntKTknjVxAlIaUUpRoFU3oA2gWR0CHoWdZq20BdX2UKGgGaAloD0MIm8qisIurXUCUhpRSlGgVTegDaBZHQIetnuTibUh1fZQoaAZoCWgPQwjcoPZbO6dWQJSGlFKUaBVN6ANoFkdAh69GoBJZn3V9lChoBmgJaA9DCJ/Ik6RrHEJAlIaUUpRoFUv6aBZHQIe1ydz4k/t1fZQoaAZoCWgPQwi22y4019pZQJSGlFKUaBVN6ANoFkdAh8nXUQTVUnV9lChoBmgJaA9DCNdrelBQ3lpAlIaUUpRoFU3oA2gWR0CHyoFGoaUBdX2UKGgGaAloD0MIW5pbIazWV0CUhpRSlGgVTegDaBZHQIfPXMlkYoB1fZQoaAZoCWgPQwh381SH3PpeQJSGlFKUaBVN6ANoFkdAh9TxUWEbpHV9lChoBmgJaA9DCMaLhSFyqmJAlIaUUpRoFU3oA2gWR0CH2mXyAhB7dX2UKGgGaAloD0MIcm2oGOfXP0CUhpRSlGgVS9NoFkdAh+xgwfyPMnV9lChoBmgJaA9DCAO0rWadtFpAlIaUUpRoFU3oA2gWR0CH/jHvMKTjdX2UKGgGaAloD0MI5j3ONGHnXUCUhpRSlGgVTegDaBZHQIgDaLn9vTB1fZQoaAZoCWgPQwjy0He3sgFcQJSGlFKUaBVN6ANoFkdAiARA0CRwInV9lChoBmgJaA9DCJOpglFJsWBAlIaUUpRoFU3oA2gWR0CIBOqo60Y1dX2UKGgGaAloD0MIUOPe/IYHW0CUhpRSlGgVTegDaBZHQIgIudRR/Ex1fZQoaAZoCWgPQwhU5BBxc2oIwJSGlFKUaBVNMQFoFkdAiAv17hNucnV9lChoBmgJaA9DCK7YX3ZPmlxAlIaUUpRoFU3oA2gWR0CIK1KyOaOQdX2UKGgGaAloD0MI8rbSa7PPV0CUhpRSlGgVTegDaBZHQIh6k2P1ct51fZQoaAZoCWgPQwjPoQxVMS9tQJSGlFKUaBVNdgFoFkdAiIAA9FF2FHV9lChoBmgJaA9DCCy8y0V8GV9AlIaUUpRoFU3oA2gWR0CIiJVYISlFdX2UKGgGaAloD0MIshLzrKThT0CUhpRSlGgVTegDaBZHQIiT0Tzundh1fZQoaAZoCWgPQwjzOXe73hdiQJSGlFKUaBVN6ANoFkdAiJVk6Lfk3nV9lChoBmgJaA9DCH3rw3ojl2FAlIaUUpRoFU3oA2gWR0CImyL9deIEdX2UKGgGaAloD0MIZF3cRgNkMECUhpRSlGgVS+poFkdAiKIqZ2IO6XV9lChoBmgJaA9DCIUGYtnMemFAlIaUUpRoFU3oA2gWR0CIrVNyo4uLdX2UKGgGaAloD0MIBeEKKNQ8YECUhpRSlGgVTegDaBZHQIiymiFj/dZ1fZQoaAZoCWgPQwhG7X4V4J9bQJSGlFKUaBVN6ANoFkdAiLfyQo1DSnV9lChoBmgJaA9DCPNxbagYezDAlIaUUpRoFUvnaBZHQIi4P3pOerd1fZQoaAZoCWgPQwihMZOoFzRIQJSGlFKUaBVL5GgWR0CIuSAWi1zAdX2UKGgGaAloD0MI3UWYolzbWkCUhpRSlGgVTegDaBZHQIjNplYlpoN1fZQoaAZoCWgPQwjjiSDOw/U2wJSGlFKUaBVNBgFoFkdAiNTrLIPsiXV9lChoBmgJaA9DCL+36c9+GWBAlIaUUpRoFU3oA2gWR0CI3emelKsddX2UKGgGaAloD0MILiC0Hr5JXECUhpRSlGgVTegDaBZHQIjilspG4I91fZQoaAZoCWgPQwj4pX7e1N9gQJSGlFKUaBVN6ANoFkdAiOQM+V1OkHV9lChoBmgJaA9DCJpeYizTrVlAlIaUUpRoFU3oA2gWR0CI6CtFrl/6dX2UKGgGaAloD0MIY0FhUKarXkCUhpRSlGgVTegDaBZHQIjroLRa5gB1fZQoaAZoCWgPQwhN27+y0s9gQJSGlFKUaBVN6ANoFkdAiQzagdwNsnV9lChoBmgJaA9DCIYA4Nizv1NAlIaUUpRoFU0AAWgWR0CJEheqJdjYdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
nomansland.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:073392da272667a39706da97a40f94e6f415a9533475e4e5d91300307109f8cb
|
3 |
+
size 144028
|
nomansland/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
nomansland/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1b96d77d40>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1b96d77dd0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1b96d77e60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1b96d77ef0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1b96d77f80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1b96d7f050>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1b96d7f0e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1b96d7f170>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1b96d7f200>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1b96d7f290>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1b96d7f320>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f1b96dc8780>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652964987.0113246,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABswrt7cLq6gq0dPCTUeLxsowA8vdxaPQAAgD8AAIA/s8aovY9SM7ruTrS6DVbdtUdTILubvNA5AACAPwAAgD8matG9hcONuUsPFrsxsEW2H7+wOtD6LToAAIA/AACAPyCvYj7IVJg7JvhMOqtJwTfpfzw96oZsuQAAgD8AAIA/gGdGvfb0HbquLxs5P3JPNXfIu7nSLTK4AACAPwAAgD/NJio99hRJuobC5rsO0kU4g0CPugPb+zYAAIA/AACAP5rpkzzhmKO6ws6iuzL5Nji+1gk6zSylNwAAgD8AAIA/mllCvhezbD/iCbW92fi0vmJLPr5a0dW8AAAAAAAAAAAz/Q48SGeJupnBK7wMUTe26jO3uWFupzUAAIA/AACAP2bSS77ctUi8sjuguqoso7hnS7s9BIzBOQAAgD8AAIA/M+eaPa6XszmSxo48nBhiO2duCzsItbq8AAAAAAAAgD/NUxE9j1Itut2PzroPApi1OvAxuxVu7zkAAIA/AACAP3CXfL421Wy8qM0uPoJATr4mHug9Q5QzPwAAgD8AAAAAwziXvr+PWz9Vpuk9cequvvKmEr7SRoQ+AAAAAAAAAADaPN09KUR4unU2ZTtVn4u0o1D6ukJQg7oAAIA/AACAP2bcJ73DjTu6xwIBvLa3JDZ+pzY7u0WWtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/BwfLc7uYUCUhpRSlIwBbJRN6AOMAXSUR0CEYr/mT1TSdX2UKGgGaAloD0MIZhah2AoeP8CUhpRSlGgVS9doFkdAhHfyCFsYVXV9lChoBmgJaA9DCDLjbaVXr2BAlIaUUpRoFU3oA2gWR0CEeIgX/HYIdX2UKGgGaAloD0MI1ZY6yOthRkCUhpRSlGgVTegDaBZHQITT6e05U991fZQoaAZoCWgPQwgVGohlM5FfQJSGlFKUaBVN6ANoFkdAhNVJx3mmtXV9lChoBmgJaA9DCPjj9ssnmzfAlIaUUpRoFUvQaBZHQITd77TDwYt1fZQoaAZoCWgPQwh1kNeDSV0/QJSGlFKUaBVNIAFoFkdAhOsnggow23V9lChoBmgJaA9DCIJXy52ZhFpAlIaUUpRoFU3oA2gWR0CE9r8Sf16FdX2UKGgGaAloD0MISZ2AJsKmM8CUhpRSlGgVS9BoFkdAhPfSIpH7QHV9lChoBmgJaA9DCHNmu0IfzFZAlIaUUpRoFU3oA2gWR0CE+E+rU9ZBdX2UKGgGaAloD0MItTUiGAdrU0CUhpRSlGgVTegDaBZHQIULPR9gF5h1fZQoaAZoCWgPQwgDYDyDBnBgQJSGlFKUaBVN6ANoFkdAhRIlLnLaEnV9lChoBmgJaA9DCDYC8br+d2FAlIaUUpRoFU3oA2gWR0CFEtooNNJwdX2UKGgGaAloD0MI1nCRe7q4XkCUhpRSlGgVTegDaBZHQIUh8gGKQ7t1fZQoaAZoCWgPQwiwrgrUYvpTQJSGlFKUaBVN6ANoFkdAhSTyuIRAbHV9lChoBmgJaA9DCDCd1m1QIyjAlIaUUpRoFUvEaBZHQIUqhkmQbMp1fZQoaAZoCWgPQwjGwDqOH1hDQJSGlFKUaBVN6ANoFkdAhS8c9Oh0yXV9lChoBmgJaA9DCOgWuhKB52FAlIaUUpRoFU3oA2gWR0CFQl6JqIrOdX2UKGgGaAloD0MIS1rxDQVqY0CUhpRSlGgVTegDaBZHQIVJWGIsRQJ1fZQoaAZoCWgPQwjB4QURqSRYQJSGlFKUaBVN6ANoFkdAhUosMqjJuHV9lChoBmgJaA9DCHO6LCY2AVtAlIaUUpRoFU3oA2gWR0CFSwNNrTH9dX2UKGgGaAloD0MISBlxAWh0IUCUhpRSlGgVTTEBaBZHQIV0NXV9Wp91fZQoaAZoCWgPQwjGF+3xQtpZQJSGlFKUaBVN6ANoFkdAhbk3cQAdXHV9lChoBmgJaA9DCEc9RKM7DFxAlIaUUpRoFU3oA2gWR0CFwmmBOHnEdX2UKGgGaAloD0MIFVW/0vmQV0CUhpRSlGgVTegDaBZHQIXPn779AHF1fZQoaAZoCWgPQwjkvP+PE6byP5SGlFKUaBVLvGgWR0CF2ZChvitJdX2UKGgGaAloD0MIzo3pCUsGXUCUhpRSlGgVTegDaBZHQIXam/vfCQ91fZQoaAZoCWgPQwh4eqUsQ0lcQJSGlFKUaBVN6ANoFkdAhdutCqp97XV9lChoBmgJaA9DCBLYnIPnSmBAlIaUUpRoFU3oA2gWR0CF3CA+Y+jedX2UKGgGaAloD0MIdmuZDMdgYECUhpRSlGgVTegDaBZHQIXzAHE/B311fZQoaAZoCWgPQwjNHmgFBqNgQJSGlFKUaBVN6ANoFkdAhfOnIQvpQnV9lChoBmgJaA9DCEOPGD23ECJAlIaUUpRoFUvraBZHQIX9H0h/y5J1fZQoaAZoCWgPQwgicCTQ4J5jQJSGlFKUaBVN6ANoFkdAhgJxXXAdn3V9lChoBmgJaA9DCJI81/fhg2BAlIaUUpRoFU3oA2gWR0CGBWiUxEfDdX2UKGgGaAloD0MICRfyCG4OYkCUhpRSlGgVTegDaBZHQIYKqClJpWV1fZQoaAZoCWgPQwhpjxfSYbxgQJSGlFKUaBVN6ANoFkdAhg6/WlMyrXV9lChoBmgJaA9DCH9Ma9PY/i1AlIaUUpRoFUuFaBZHQIYiDvZyuIR1fZQoaAZoCWgPQwjXhLTGoDhbQJSGlFKUaBVN6ANoFkdAhiaQtapxWHV9lChoBmgJaA9DCKTFGcOcy1dAlIaUUpRoFU3oA2gWR0CGJ00gr6LwdX2UKGgGaAloD0MI3o0FhUGlTkCUhpRSlGgVTegDaBZHQIYoGqioKlZ1fZQoaAZoCWgPQwge39416Ns7QJSGlFKUaBVL4mgWR0CGK28jAzpHdX2UKGgGaAloD0MI+boM/2kNYUCUhpRSlGgVTegDaBZHQIZOY6dUbUB1fZQoaAZoCWgPQwjmApfHmrNHQJSGlFKUaBVNFgFoFkdAhlLlQ/HHWHV9lChoBmgJaA9DCFO0ci8wLFlAlIaUUpRoFU3oA2gWR0CGnp6zmfXgdX2UKGgGaAloD0MIAYi7ehUpX0CUhpRSlGgVTegDaBZHQIas1iSaEzx1fZQoaAZoCWgPQwhAbOnRVBNjQJSGlFKUaBVN6ANoFkdAhrjkkB0ZFXV9lChoBmgJaA9DCJmaBG9IBlZAlIaUUpRoFU3oA2gWR0CGug31jAi3dX2UKGgGaAloD0MIMq8jDll4YECUhpRSlGgVTegDaBZHQIa6m3pfQa91fZQoaAZoCWgPQwjiWBe30YhjQJSGlFKUaBVN6ANoFkdAhtRY51eSjnV9lChoBmgJaA9DCI4Dr5Y7fmFAlIaUUpRoFU3oA2gWR0CG1Qy9EkSmdX2UKGgGaAloD0MIN1SM8zfdM0CUhpRSlGgVS71oFkdAhtnkfcN6PnV9lChoBmgJaA9DCC4B+KdU42NAlIaUUpRoFU3oA2gWR0CG36o86mwadX2UKGgGaAloD0MItqD3xhARV0CUhpRSlGgVTegDaBZHQIblX4Kx9oh1fZQoaAZoCWgPQwh2G9R+a71fQJSGlFKUaBVN6ANoFkdAhugpo9LYgHV9lChoBmgJaA9DCLfte9Rf7F1AlIaUUpRoFU3oA2gWR0CHCcR7qptKdX2UKGgGaAloD0MIeXk6V5QlXUCUhpRSlGgVTegDaBZHQIcPPPeHi3p1fZQoaAZoCWgPQwjf+xu0V1piQJSGlFKUaBVN6ANoFkdAhxAl0xM363V9lChoBmgJaA9DCJolAWpqZTRAlIaUUpRoFUvraBZHQIcQ2M6zVtp1fZQoaAZoCWgPQwijQJ/IkxReQJSGlFKUaBVN6ANoFkdAhxVsBhhH9XV9lChoBmgJaA9DCLO1vkhokGFAlIaUUpRoFU3oA2gWR0CHP1xLCemOdX2UKGgGaAloD0MIbVhTWRSeXECUhpRSlGgVTegDaBZHQIdEcY8+zMR1fZQoaAZoCWgPQwgg09o0NthlQJSGlFKUaBVN6ANoFkdAh5J92Pkq+nV9lChoBmgJaA9DCDntKTknjVxAlIaUUpRoFU3oA2gWR0CHoWdZq20BdX2UKGgGaAloD0MIm8qisIurXUCUhpRSlGgVTegDaBZHQIetnuTibUh1fZQoaAZoCWgPQwjcoPZbO6dWQJSGlFKUaBVN6ANoFkdAh69GoBJZn3V9lChoBmgJaA9DCJ/Ik6RrHEJAlIaUUpRoFUv6aBZHQIe1ydz4k/t1fZQoaAZoCWgPQwi22y4019pZQJSGlFKUaBVN6ANoFkdAh8nXUQTVUnV9lChoBmgJaA9DCNdrelBQ3lpAlIaUUpRoFU3oA2gWR0CHyoFGoaUBdX2UKGgGaAloD0MIW5pbIazWV0CUhpRSlGgVTegDaBZHQIfPXMlkYoB1fZQoaAZoCWgPQwh381SH3PpeQJSGlFKUaBVN6ANoFkdAh9TxUWEbpHV9lChoBmgJaA9DCMaLhSFyqmJAlIaUUpRoFU3oA2gWR0CH2mXyAhB7dX2UKGgGaAloD0MIcm2oGOfXP0CUhpRSlGgVS9NoFkdAh+xgwfyPMnV9lChoBmgJaA9DCAO0rWadtFpAlIaUUpRoFU3oA2gWR0CH/jHvMKTjdX2UKGgGaAloD0MI5j3ONGHnXUCUhpRSlGgVTegDaBZHQIgDaLn9vTB1fZQoaAZoCWgPQwjy0He3sgFcQJSGlFKUaBVN6ANoFkdAiARA0CRwInV9lChoBmgJaA9DCJOpglFJsWBAlIaUUpRoFU3oA2gWR0CIBOqo60Y1dX2UKGgGaAloD0MIUOPe/IYHW0CUhpRSlGgVTegDaBZHQIgIudRR/Ex1fZQoaAZoCWgPQwhU5BBxc2oIwJSGlFKUaBVNMQFoFkdAiAv17hNucnV9lChoBmgJaA9DCK7YX3ZPmlxAlIaUUpRoFU3oA2gWR0CIK1KyOaOQdX2UKGgGaAloD0MI8rbSa7PPV0CUhpRSlGgVTegDaBZHQIh6k2P1ct51fZQoaAZoCWgPQwjPoQxVMS9tQJSGlFKUaBVNdgFoFkdAiIAA9FF2FHV9lChoBmgJaA9DCCy8y0V8GV9AlIaUUpRoFU3oA2gWR0CIiJVYISlFdX2UKGgGaAloD0MIshLzrKThT0CUhpRSlGgVTegDaBZHQIiT0Tzundh1fZQoaAZoCWgPQwjzOXe73hdiQJSGlFKUaBVN6ANoFkdAiJVk6Lfk3nV9lChoBmgJaA9DCH3rw3ojl2FAlIaUUpRoFU3oA2gWR0CImyL9deIEdX2UKGgGaAloD0MIZF3cRgNkMECUhpRSlGgVS+poFkdAiKIqZ2IO6XV9lChoBmgJaA9DCIUGYtnMemFAlIaUUpRoFU3oA2gWR0CIrVNyo4uLdX2UKGgGaAloD0MIBeEKKNQ8YECUhpRSlGgVTegDaBZHQIiymiFj/dZ1fZQoaAZoCWgPQwhG7X4V4J9bQJSGlFKUaBVN6ANoFkdAiLfyQo1DSnV9lChoBmgJaA9DCPNxbagYezDAlIaUUpRoFUvnaBZHQIi4P3pOerd1fZQoaAZoCWgPQwihMZOoFzRIQJSGlFKUaBVL5GgWR0CIuSAWi1zAdX2UKGgGaAloD0MI3UWYolzbWkCUhpRSlGgVTegDaBZHQIjNplYlpoN1fZQoaAZoCWgPQwjjiSDOw/U2wJSGlFKUaBVNBgFoFkdAiNTrLIPsiXV9lChoBmgJaA9DCL+36c9+GWBAlIaUUpRoFU3oA2gWR0CI3emelKsddX2UKGgGaAloD0MILiC0Hr5JXECUhpRSlGgVTegDaBZHQIjilspG4I91fZQoaAZoCWgPQwj4pX7e1N9gQJSGlFKUaBVN6ANoFkdAiOQM+V1OkHV9lChoBmgJaA9DCJpeYizTrVlAlIaUUpRoFU3oA2gWR0CI6CtFrl/6dX2UKGgGaAloD0MIY0FhUKarXkCUhpRSlGgVTegDaBZHQIjroLRa5gB1fZQoaAZoCWgPQwhN27+y0s9gQJSGlFKUaBVN6ANoFkdAiQzagdwNsnV9lChoBmgJaA9DCIYA4Nizv1NAlIaUUpRoFU0AAWgWR0CJEheqJdjYdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
nomansland/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b5fdae4ef82ea1010806a8f2b1f8db48fd96f9ac0bb84e1149c6f7bfde04e7d
|
3 |
+
size 84829
|
nomansland/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abe11f98b6e667bf7101bbb657480744a7624b4969658892c471bfdf4f1e3984
|
3 |
+
size 43201
|
nomansland/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
nomansland/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fe5ef84b7e96c329fee9d5394d8e677ce6cd5470dc99e03f1b4853b7702793c
|
3 |
+
size 230103
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 175.26293010911732, "std_reward": 80.00968545075348, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-19T13:23:07.902496"}
|