Create modeling_tunbert.py
Browse files- modeling_tunbert.py +31 -0
modeling_tunbert.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM, AutoModelForSequenceClassification, PreTrainedModel,AutoConfig, BertModel
|
3 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
4 |
+
|
5 |
+
class classifier(nn.Module):
|
6 |
+
def __init__(self,config):
|
7 |
+
super().__init__()
|
8 |
+
|
9 |
+
self.layer0 = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=True)
|
10 |
+
self.layer1 = nn.Linear(in_features=config.hidden_size, out_features=config.type_vocab_size, bias=True)
|
11 |
+
def forward(self,tensor):
|
12 |
+
out1 = self.layer0(tensor)
|
13 |
+
return self.layer1(out1)
|
14 |
+
|
15 |
+
|
16 |
+
class TunBERT(PreTrainedModel):
|
17 |
+
def __init__(self, config):
|
18 |
+
super().__init__(config)
|
19 |
+
self.BertModel = BertModel(config)
|
20 |
+
self.dropout = nn.Dropout(p=0.1, inplace=False)
|
21 |
+
self.classifier = classifier(config)
|
22 |
+
|
23 |
+
def forward(self,input_ids=None,token_type_ids=None,attention_mask=None,labels=None) :
|
24 |
+
outputs = self.BertModel(input_ids,token_type_ids,attention_mask)
|
25 |
+
sequence_output = self.dropout(outputs.last_hidden_state)
|
26 |
+
logits = self.classifier(sequence_output)
|
27 |
+
loss =None
|
28 |
+
if labels is not None :
|
29 |
+
loss_func = nn.CrossentropyLoss()
|
30 |
+
loss = loss_func(logits.view(-1,self.config.type_vocab_size),labels.view(-1))
|
31 |
+
return SequenceClassifierOutput(loss = loss, logits= logits, hidden_states=outputs.last_hidden_state,attentions=outputs.attentions)
|