from transformers import PretrainedConfig class TunBertConfig(PretrainedConfig): model_type = "bert" def __init__(self, attention_probs_dropout_prob = 0.1, classifier_dropout = None, gradient_checkpointing = False, hidden_act = "gelu", hidden_dropout_prob = 0.1, hidden_size = 768, initializer_range = 0.02, intermediate_size = 3072, layer_norm_eps = 1e-12, max_position_embeddings = 512, model_type = "bert", num_attention_heads = 12, num_hidden_layers = 12, pad_token_id = 0, position_embedding_type = "absolute", transformers_version = "4.35.2", type_vocab_size = 2, use_cache = True, vocab_size = 30522, **kwargs): self.attention_probs_dropout_prob = attention_probs_dropout_prob self.classifier_dropout = classifier_dropout self.gradient_checkpointing = gradient_checkpointing self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.hidden_size = hidden_size self.initializer_range = initializer_range self.intermediate_size = intermediate_size self.layer_norm_eps = layer_norm_eps self.max_position_embeddings = max_position_embeddings self.model_type = model_type self.num_attention_heads = num_attention_heads self.num_hidden_layers = num_hidden_layers self.pad_token_id = pad_token_id self.position_embedding_type = position_embedding_type self.transformers_version = transformers_version self.type_vocab_size = type_vocab_size self.use_cache = use_cache self.vocab_size = vocab_size super().__init__(**kwargs)