File size: 2,200 Bytes
f11f519 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_trainer
model-index:
- name: Bart-base-v4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Bart-base-v4
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0390
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.095 | 0.32 | 250 | 0.0445 |
| 0.0509 | 0.64 | 500 | 0.0425 |
| 0.0495 | 0.96 | 750 | 0.0411 |
| 0.0456 | 1.28 | 1000 | 0.0403 |
| 0.0431 | 1.61 | 1250 | 0.0401 |
| 0.0427 | 1.93 | 1500 | 0.0392 |
| 0.0395 | 2.25 | 1750 | 0.0397 |
| 0.0384 | 2.57 | 2000 | 0.0391 |
| 0.0382 | 2.89 | 2250 | 0.0390 |
| 0.0358 | 3.21 | 2500 | 0.0394 |
| 0.0349 | 3.53 | 2750 | 0.0392 |
| 0.0344 | 3.85 | 3000 | 0.0390 |
| 0.0333 | 4.17 | 3250 | 0.0392 |
| 0.0314 | 4.49 | 3500 | 0.0393 |
| 0.0321 | 4.82 | 3750 | 0.0390 |
| 0.0308 | 5.14 | 4000 | 0.0392 |
| 0.0297 | 5.46 | 4250 | 0.0394 |
| 0.0299 | 5.78 | 4500 | 0.0390 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.15.2
|