Upload vocab_transplant.py
Browse files- vocab_transplant.py +53 -0
vocab_transplant.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch, torch.nn as nn
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
|
4 |
+
source_dir = "/mnt/str/models/qwen2-0.5b-instruct"
|
5 |
+
target_dir = "/mnt/str/models/llama3-70b-instruct"
|
6 |
+
output_dir = "/mnt/str/temp/transplant"
|
7 |
+
|
8 |
+
# Load model and tokenizers
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(source_dir, device_map = "auto")
|
10 |
+
tokenizer_source = AutoTokenizer.from_pretrained(source_dir)
|
11 |
+
tokenizer_target = AutoTokenizer.from_pretrained(target_dir)
|
12 |
+
tied = model.config.tie_word_embeddings
|
13 |
+
target_vocab_size = max(tokenizer_target.vocab.values()) + 1 # vocab_size member seems to be unreliable
|
14 |
+
|
15 |
+
# Embedding tensor
|
16 |
+
old_emb = model.model.embed_tokens.weight
|
17 |
+
new_emb = torch.empty((target_vocab_size, model.config.hidden_size),
|
18 |
+
dtype = old_emb.dtype, device = old_emb.device)
|
19 |
+
|
20 |
+
# Head tensor
|
21 |
+
old_head = model.lm_head.weight
|
22 |
+
new_head = torch.empty((target_vocab_size, model.config.hidden_size),
|
23 |
+
dtype = old_head.dtype, device = old_head.device)
|
24 |
+
|
25 |
+
# Initialize new tensors
|
26 |
+
for idx in range(target_vocab_size):
|
27 |
+
decode = tokenizer_target.decode(torch.tensor(idx, dtype = torch.long), decode_special_tokens = True)
|
28 |
+
encode = tokenizer_source.encode(decode, add_special_tokens = False, return_tensors = "pt")
|
29 |
+
new_emb[idx] = old_emb[encode.flatten()].mean(dim = 0)
|
30 |
+
new_head[idx] = old_head[encode.flatten()].mean(dim = 0)
|
31 |
+
|
32 |
+
# Replace embedding tensor
|
33 |
+
model.model.embed_tokens.weight = nn.Parameter(new_emb, requires_grad = False)
|
34 |
+
model.model.embed_tokens.num_embeddings = target_vocab_size
|
35 |
+
|
36 |
+
# Replace head tensor
|
37 |
+
model.lm_head.weight = nn.Parameter(new_head, requires_grad = False)
|
38 |
+
model.lm_head.out_features = tokenizer_target.vocab_size
|
39 |
+
|
40 |
+
# Update model
|
41 |
+
model.vocab_size = target_vocab_size
|
42 |
+
model.config.vocab_size = target_vocab_size
|
43 |
+
model.config.bos_token_id = tokenizer_target.bos_token_id
|
44 |
+
model.config.eos_token_id = tokenizer_target.eos_token_id
|
45 |
+
|
46 |
+
# Save
|
47 |
+
model.save_pretrained(output_dir, tie_word_embeddings = tied)
|
48 |
+
tokenizer_target.save_pretrained(output_dir)
|
49 |
+
|
50 |
+
# This is more reliable since save_pretrained seems to gives you a messed up model with some architectures,
|
51 |
+
# but it requires manually copying and modifying config.json etc.:
|
52 |
+
#
|
53 |
+
# save_file(model.state_dict(), os.path.join(args.output_dir, "model.safetensors"), metadata = {'format': 'pt'})
|