a2c-PandaReachDense-v2 / config.json
tux's picture
Initial commit
d886d7e
raw
history blame
15.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4375f0c820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4375f022c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 402972, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687168584206449327, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAP+0Nv+fjuT9L2H+/YPyqP9fRiD+bdYm/GMKlPk/BgryIdjq+R6axP8umkr8pS8W/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQXMkv72PqD/rzoq/LruyP6OHfT95FJe/EfyPPiiNpLz4bne+UezAP5V+jr+OWtW/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA/7Q2/5+O5P0vYf7+4iIG9faWWPVx46jtg/Ko/19GIP5t1ib9ZRE29rLAGPs8jo7sYwqU+T8GCvIh2Or712449iY75vcFY1jxHprE/y6aSvylLxb8UBOq99qHwvgAMrryUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.55440134 1.4522675 -0.9993941 ]\n [ 1.3358269 1.0689038 -1.0739015 ]\n [ 0.32374644 -0.01596132 -0.18209279]\n [ 1.3878869 -1.1457151 -1.5413562 ]]", "desired_goal": "[[-0.64238364 1.3168865 -1.0844396 ]\n [ 1.3963373 0.9903509 -1.1803123 ]\n [ 0.28122 -0.02008684 -0.24163425]\n [ 1.5072118 -1.113238 -1.666826 ]]", "observation": "[[-0.55440134 1.4522675 -0.9993941 -0.06324905 0.07355783 0.00715546]\n [ 1.3358269 1.0689038 -1.0739015 -0.05011401 0.13153332 -0.00497863]\n [ 0.32374644 -0.01596132 -0.18209279 0.06975547 -0.1218539 0.02616537]\n [ 1.3878869 -1.1457151 -1.5413562 -0.11426559 -0.46998566 -0.02124596]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKiODPXhI/z3NQZk+TuwDPtLJtT2f4Ws+isWmPYCoIb3aSZc+s7LGvaRlF7uKTHk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.06403191 0.12464994 0.29933015]\n [ 0.12883112 0.08876385 0.23035286]\n [ 0.08143146 -0.03946733 0.29548532]\n [-0.09702053 -0.00231014 0.24345604]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.59704, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeNDsurei4r+UhpRSlIwBbJRLMowBdJRHQJE/zNKRMex1fZQoaAZoCWgPQwgfLGNDN/vgv5SGlFKUaBVLMmgWR0CRP1cKgIyCdX2UKGgGaAloD0MIy03U0twK4L+UhpRSlGgVSzJoFkdAkT7hp+MIeHV9lChoBmgJaA9DCKw41VqYhdS/lIaUUpRoFUsyaBZHQJE+ahi9Zid1fZQoaAZoCWgPQwggY+5aQr7kv5SGlFKUaBVLMmgWR0CRQeqYJE6UdX2UKGgGaAloD0MIBtfc0f9y3b+UhpRSlGgVSzJoFkdAkUF03Ov+wXV9lChoBmgJaA9DCGqHvyZr1Oe/lIaUUpRoFUsyaBZHQJFA/433pOh1fZQoaAZoCWgPQwgD6s2o+Srav5SGlFKUaBVLMmgWR0CRQIhn8KoidX2UKGgGaAloD0MIaJdvfVjv5L+UhpRSlGgVSzJoFkdAkUP8an7523V9lChoBmgJaA9DCMUaLnJP1+q/lIaUUpRoFUsyaBZHQJFDhliBoVV1fZQoaAZoCWgPQwh0stR6v9Hcv5SGlFKUaBVLMmgWR0CRQxEw35vcdX2UKGgGaAloD0MIUgyQaAJF3b+UhpRSlGgVSzJoFkdAkUKZnlGPP3V9lChoBmgJaA9DCNrJ4Ch5dea/lIaUUpRoFUsyaBZHQJFGHjebd8B1fZQoaAZoCWgPQwg8LqpFRDHfv5SGlFKUaBVLMmgWR0CRRahqCYkWdX2UKGgGaAloD0MIKGA7GLHP47+UhpRSlGgVSzJoFkdAkUUzIvJzUHV9lChoBmgJaA9DCBH8byU7NuS/lIaUUpRoFUsyaBZHQJFEu5UcXFd1fZQoaAZoCWgPQwhu/InKhjXUv5SGlFKUaBVLMmgWR0CRSFBWPtD2dX2UKGgGaAloD0MIU7RyLzCr5L+UhpRSlGgVSzJoFkdAkUfaujh1knV9lChoBmgJaA9DCKa6gJcZtu6/lIaUUpRoFUsyaBZHQJFHZXZGrjp1fZQoaAZoCWgPQwgRj8TL07nav5SGlFKUaBVLMmgWR0CRRu3vx6OYdX2UKGgGaAloD0MI5IIz+PtF6r+UhpRSlGgVSzJoFkdAkUqBOk+HJ3V9lChoBmgJaA9DCAznGmZoPNu/lIaUUpRoFUsyaBZHQJFKCza9K291fZQoaAZoCWgPQwgqpz0l50Tiv5SGlFKUaBVLMmgWR0CRSZYO2AoYdX2UKGgGaAloD0MI+S8QBMhQ6r+UhpRSlGgVSzJoFkdAkUkec+aBqnV9lChoBmgJaA9DCBd/2xMkNuy/lIaUUpRoFUsyaBZHQJFMqMzdk8R1fZQoaAZoCWgPQwjv4v24/fLgv5SGlFKUaBVLMmgWR0CRTDK9f1HwdX2UKGgGaAloD0MIcY46Oq5G5r+UhpRSlGgVSzJoFkdAkUu9bkfcOHV9lChoBmgJaA9DCIY7F0Z6Ueu/lIaUUpRoFUsyaBZHQJFLRmapgkV1fZQoaAZoCWgPQwjHRiBe16/tv5SGlFKUaBVLMmgWR0CRTsAJswcpdX2UKGgGaAloD0MIICbhQh7B3L+UhpRSlGgVSzJoFkdAkU5KJZW7v3V9lChoBmgJaA9DCCjv42iOLOa/lIaUUpRoFUsyaBZHQJFN1RuTA311fZQoaAZoCWgPQwhs6GZ/oNzUv5SGlFKUaBVLMmgWR0CRTV2zfJmvdX2UKGgGaAloD0MIcZLmj2lt2L+UhpRSlGgVSzJoFkdAkVDsW9DhL3V9lChoBmgJaA9DCMZQTrSrkOS/lIaUUpRoFUsyaBZHQJFQdqpLmIV1fZQoaAZoCWgPQwhZ+zvbo7fkv5SGlFKUaBVLMmgWR0CRUAGACnxbdX2UKGgGaAloD0MI7KNTVz7L5r+UhpRSlGgVSzJoFkdAkU+KI7/4qXV9lChoBmgJaA9DCEInhA66hNq/lIaUUpRoFUsyaBZHQJFS/c8DB/J1fZQoaAZoCWgPQwh0QuigSzjpv5SGlFKUaBVLMmgWR0CRUogkC3gDdX2UKGgGaAloD0MIRpkNMsnI4b+UhpRSlGgVSzJoFkdAkVITGT9sJ3V9lChoBmgJaA9DCLJiuDoAYuC/lIaUUpRoFUsyaBZHQJFRm9XcQAd1fZQoaAZoCWgPQwjKiAtAo3Tiv5SGlFKUaBVLMmgWR0CRVSfOlfqpdX2UKGgGaAloD0MIZM+ey9Qk27+UhpRSlGgVSzJoFkdAkVSyWRigCnV9lChoBmgJaA9DCHEDPj+MEOu/lIaUUpRoFUsyaBZHQJFUPTnaFmF1fZQoaAZoCWgPQwiQwB9+/nvcv5SGlFKUaBVLMmgWR0CRU8YdQwbmdX2UKGgGaAloD0MITkUqjC0E7b+UhpRSlGgVSzJoFkdAkVdJE+gUUXV9lChoBmgJaA9DCCO9qN2vAua/lIaUUpRoFUsyaBZHQJFW0yLyc1B1fZQoaAZoCWgPQwgHCVG+oIXrv5SGlFKUaBVLMmgWR0CRVl3Q2MsIdX2UKGgGaAloD0MIsvUM4Zhl37+UhpRSlGgVSzJoFkdAkVXmMsH0LHV9lChoBmgJaA9DCEvoLomzouS/lIaUUpRoFUsyaBZHQJFZX95yEL91fZQoaAZoCWgPQwguy9dl+E/nv5SGlFKUaBVLMmgWR0CRWOnjABT5dX2UKGgGaAloD0MIlq/L8J9u3r+UhpRSlGgVSzJoFkdAkVh0jPfKp3V9lChoBmgJaA9DCGlSCrq9pNm/lIaUUpRoFUsyaBZHQJFX/Roh6jZ1fZQoaAZoCWgPQwiSrwRSYtfpv5SGlFKUaBVLMmgWR0CRW37jkuHvdX2UKGgGaAloD0MIOEpenWPA5r+UhpRSlGgVSzJoFkdAkVsKqS5iE3V9lChoBmgJaA9DCDqxh/axgtu/lIaUUpRoFUsyaBZHQJFal1RtP551fZQoaAZoCWgPQwjnUfF/R9Tgv5SGlFKUaBVLMmgWR0CRWiHZbpu/dX2UKGgGaAloD0MIttsuNNfp5b+UhpRSlGgVSzJoFkdAkV2dMGorF3V9lChoBmgJaA9DCIjYYOEkzeG/lIaUUpRoFUsyaBZHQJFdJ1SwW311fZQoaAZoCWgPQwhsBU1LrIzev5SGlFKUaBVLMmgWR0CRXLIpH7P6dX2UKGgGaAloD0MIS80eaAWG17+UhpRSlGgVSzJoFkdAkVw7kOqeb3V9lChoBmgJaA9DCCi37XvU3/C/lIaUUpRoFUsyaBZHQJFfuWUr08N1fZQoaAZoCWgPQwjCobd4eM/fv5SGlFKUaBVLMmgWR0CRX0OB19v1dX2UKGgGaAloD0MICwxZ3eo52r+UhpRSlGgVSzJoFkdAkV7ONLlFMXV9lChoBmgJaA9DCApNEkvK3eK/lIaUUpRoFUsyaBZHQJFeVtYSxqx1fZQoaAZoCWgPQwgah/pd2JrWv5SGlFKUaBVLMmgWR0CRYuJrLyMDdX2UKGgGaAloD0MIPgXAeAYN2r+UhpRSlGgVSzJoFkdAkWJuc+aBqnV9lChoBmgJaA9DCL3+JD53gta/lIaUUpRoFUsyaBZHQJFh+rJbMX91fZQoaAZoCWgPQwiLFqBtNeviv5SGlFKUaBVLMmgWR0CRYYT6BRQ8dX2UKGgGaAloD0MI/0EkQ44t6r+UhpRSlGgVSzJoFkdAkWbUYbbUPXV9lChoBmgJaA9DCGGowwq3/OW/lIaUUpRoFUsyaBZHQJFmX4xk/bF1fZQoaAZoCWgPQwjbNLbXgt7cv5SGlFKUaBVLMmgWR0CRZevf0mMPdX2UKGgGaAloD0MIM/lmmxvT1b+UhpRSlGgVSzJoFkdAkWV17Y02tXV9lChoBmgJaA9DCGE0K9uHvNu/lIaUUpRoFUsyaBZHQJFqc2ycCo11fZQoaAZoCWgPQwi4rMJmgAvWv5SGlFKUaBVLMmgWR0CRaf+FDfFadX2UKGgGaAloD0MIFOtU+Z4R4L+UhpRSlGgVSzJoFkdAkWmMfigkC3V9lChoBmgJaA9DCKInZVJDG96/lIaUUpRoFUsyaBZHQJFpFz6rNnp1fZQoaAZoCWgPQwjLS/4nf/fav5SGlFKUaBVLMmgWR0CRbj94NZvDdX2UKGgGaAloD0MIHJlH/mDg4b+UhpRSlGgVSzJoFkdAkW3LaM72c3V9lChoBmgJaA9DCIQsCyb+KNy/lIaUUpRoFUsyaBZHQJFtWDvmYBx1fZQoaAZoCWgPQwhf0EICRpffv5SGlFKUaBVLMmgWR0CRbOMqSX+mdX2UKGgGaAloD0MI9rTDX5O14L+UhpRSlGgVSzJoFkdAkXIKPOpsGnV9lChoBmgJaA9DCCS3Jt2WSOa/lIaUUpRoFUsyaBZHQJFxlnyup0h1fZQoaAZoCWgPQwi8I2O1+X/fv5SGlFKUaBVLMmgWR0CRcSNfw7T2dX2UKGgGaAloD0MI4fHtXYM+6L+UhpRSlGgVSzJoFkdAkXCtszl90HV9lChoBmgJaA9DCMsTCDvFKua/lIaUUpRoFUsyaBZHQJF1t8iOeat1fZQoaAZoCWgPQwjUYBqGj4jfv5SGlFKUaBVLMmgWR0CRdUQaJhvzdX2UKGgGaAloD0MIEqW9wRem5b+UhpRSlGgVSzJoFkdAkXTQpBomHHV9lChoBmgJaA9DCG7DKAge3+i/lIaUUpRoFUsyaBZHQJF0Wx8lXzV1fZQoaAZoCWgPQwgsoFBPHwHkv5SGlFKUaBVLMmgWR0CReFk7OmiydX2UKGgGaAloD0MITOKsiJro2r+UhpRSlGgVSzJoFkdAkXfjcdo373V9lChoBmgJaA9DCCUk0jb+ROK/lIaUUpRoFUsyaBZHQJF3bpFCswN1fZQoaAZoCWgPQwiDUUmdgKbkv5SGlFKUaBVLMmgWR0CRdvckMTewdX2UKGgGaAloD0MILESHwJHA5L+UhpRSlGgVSzJoFkdAkXqVHjIaLnV9lChoBmgJaA9DCHMwmwDD8tC/lIaUUpRoFUsyaBZHQJF6Hz+WGAV1fZQoaAZoCWgPQwgLmSuDaoPfv5SGlFKUaBVLMmgWR0CReaoa1kUcdX2UKGgGaAloD0MIP/89eO3S2b+UhpRSlGgVSzJoFkdAkXky9ytFKHV9lChoBmgJaA9DCKPnFroSgdK/lIaUUpRoFUsyaBZHQJF8uW9lEql1fZQoaAZoCWgPQwiCN6RRgZPkv5SGlFKUaBVLMmgWR0CRfEPWQOnVdX2UKGgGaAloD0MI1A/qIoWy2r+UhpRSlGgVSzJoFkdAkXvOotL+P3V9lChoBmgJaA9DCNYZ3xeXqtW/lIaUUpRoFUsyaBZHQJF7VzEJjUd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 20148, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}