tvtcm commited on
Commit
16d9228
1 Parent(s): e1731a8

Model save

Browse files
Files changed (2) hide show
  1. README.md +18 -18
  2. pytorch_model.bin +1 -1
README.md CHANGED
@@ -4,7 +4,7 @@ base_model: neuralmind/bert-base-portuguese-cased
4
  tags:
5
  - generated_from_trainer
6
  datasets:
7
- - conll2003
8
  metrics:
9
  - precision
10
  - recall
@@ -17,24 +17,24 @@ model-index:
17
  name: Token Classification
18
  type: token-classification
19
  dataset:
20
- name: conll2003
21
- type: conll2003
22
- config: conll2003
23
  split: test
24
- args: conll2003
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8545598048360479
29
  - name: Recall
30
  type: recall
31
- value: 0.8687723393391202
32
  - name: F1
33
  type: f1
34
- value: 0.8616074658178399
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9646568001175846
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -42,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
42
 
43
  # bert-base-portuguese-cased-finetuned-ner
44
 
45
- This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.1869
48
- - Precision: 0.8546
49
- - Recall: 0.8688
50
- - F1: 0.8616
51
- - Accuracy: 0.9647
52
 
53
  ## Model description
54
 
@@ -79,9 +79,9 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.265 | 1.0 | 878 | 0.1812 | 0.8254 | 0.8378 | 0.8316 | 0.9576 |
83
- | 0.0709 | 2.0 | 1756 | 0.1843 | 0.8367 | 0.8592 | 0.8478 | 0.9611 |
84
- | 0.048 | 3.0 | 2634 | 0.1869 | 0.8546 | 0.8688 | 0.8616 | 0.9647 |
85
 
86
 
87
  ### Framework versions
 
4
  tags:
5
  - generated_from_trainer
6
  datasets:
7
+ - lener_br
8
  metrics:
9
  - precision
10
  - recall
 
17
  name: Token Classification
18
  type: token-classification
19
  dataset:
20
+ name: lener_br
21
+ type: lener_br
22
+ config: lener_br
23
  split: test
24
+ args: lener_br
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8717564870259481
29
  - name: Recall
30
  type: recall
31
+ value: 0.8995880535530381
32
  - name: F1
33
  type: f1
34
+ value: 0.88545362392296
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9836487420412604
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
42
 
43
  # bert-base-portuguese-cased-finetuned-ner
44
 
45
+ This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the lener_br dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0652
48
+ - Precision: 0.8718
49
+ - Recall: 0.8996
50
+ - F1: 0.8855
51
+ - Accuracy: 0.9836
52
 
53
  ## Model description
54
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | No log | 1.0 | 490 | 0.0911 | 0.8063 | 0.7703 | 0.7879 | 0.9734 |
83
+ | 0.1901 | 2.0 | 980 | 0.0665 | 0.8525 | 0.8929 | 0.8722 | 0.9819 |
84
+ | 0.0419 | 3.0 | 1470 | 0.0652 | 0.8718 | 0.8996 | 0.8855 | 0.9836 |
85
 
86
 
87
  ### Framework versions
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7d8784092698007285800d0104ffa67f061e65ef7d0fbd046d38dd27236fc96c
3
  size 433438310
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38a8a62c68029a9b3442a5eca9b22472d8d9b91123f28d93ff3aaf607d2814d8
3
  size 433438310