File size: 10,226 Bytes
2281ddd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4ee657
 
2281ddd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
license: other
base_model: nvidia/mit-b5
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b5-finetuned-HikingHD
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b5-finetuned-HikingHD

This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the twdent/HikingHD dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1077
- Mean Iou: 0.6364
- Mean Accuracy: 0.9770
- Overall Accuracy: 0.9771
- Accuracy Unlabeled: nan
- Accuracy Traversable: 0.9758
- Accuracy Non-traversable: 0.9781
- Iou Unlabeled: 0.0
- Iou Traversable: 0.9493
- Iou Non-traversable: 0.9600
- Local Testing:
  - Average inference time: 0.9943107657962376

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Traversable | Accuracy Non-traversable | Iou Unlabeled | Iou Traversable | Iou Non-traversable |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------------:|:------------------------:|:-------------:|:---------------:|:-------------------:|
| 0.1595        | 1.33  | 20   | 0.1789          | 0.9314   | 0.9657        | 0.9649           | nan                | 0.9727               | 0.9588                   | nan           | 0.9240          | 0.9388              |
| 0.3593        | 2.67  | 40   | 0.1137          | 0.9429   | 0.9731        | 0.9709           | nan                | 0.9911               | 0.9551                   | nan           | 0.9372          | 0.9485              |
| 0.1002        | 4.0   | 60   | 0.0979          | 0.9363   | 0.9661        | 0.9677           | nan                | 0.9531               | 0.9791                   | nan           | 0.9282          | 0.9444              |
| 0.0348        | 5.33  | 80   | 0.0933          | 0.9442   | 0.9713        | 0.9717           | nan                | 0.9675               | 0.9750                   | nan           | 0.9375          | 0.9509              |
| 0.0374        | 6.67  | 100  | 0.0884          | 0.9459   | 0.9714        | 0.9727           | nan                | 0.9611               | 0.9817                   | nan           | 0.9391          | 0.9528              |
| 0.0447        | 8.0   | 120  | 0.0886          | 0.9491   | 0.9737        | 0.9743           | nan                | 0.9684               | 0.9789                   | nan           | 0.9430          | 0.9553              |
| 0.0464        | 9.33  | 140  | 0.0790          | 0.9564   | 0.9783        | 0.9780           | nan                | 0.9804               | 0.9762                   | nan           | 0.9514          | 0.9614              |
| 0.0421        | 10.67 | 160  | 0.0868          | 0.9540   | 0.9764        | 0.9768           | nan                | 0.9733               | 0.9796                   | nan           | 0.9485          | 0.9596              |
| 0.0253        | 12.0  | 180  | 0.0887          | 0.9530   | 0.9756        | 0.9763           | nan                | 0.9700               | 0.9812                   | nan           | 0.9472          | 0.9587              |
| 0.0364        | 13.33 | 200  | 0.0960          | 0.9494   | 0.9733        | 0.9745           | nan                | 0.9638               | 0.9829                   | nan           | 0.9431          | 0.9558              |
| 0.0276        | 14.67 | 220  | 0.0980          | 0.9470   | 0.9717        | 0.9732           | nan                | 0.9595               | 0.9840                   | nan           | 0.9402          | 0.9538              |
| 0.0279        | 16.0  | 240  | 0.0914          | 0.9534   | 0.9761        | 0.9765           | nan                | 0.9725               | 0.9796                   | nan           | 0.9478          | 0.9590              |
| 0.026         | 17.33 | 260  | 0.0886          | 0.9557   | 0.9778        | 0.9777           | nan                | 0.9792               | 0.9764                   | nan           | 0.9506          | 0.9609              |
| 0.0228        | 18.67 | 280  | 0.0888          | 0.9547   | 0.9775        | 0.9771           | nan                | 0.9804               | 0.9745                   | nan           | 0.9495          | 0.9599              |
| 0.0259        | 20.0  | 300  | 0.0984          | 0.9505   | 0.9742        | 0.9750           | nan                | 0.9679               | 0.9806                   | nan           | 0.9444          | 0.9565              |
| 0.0306        | 21.33 | 320  | 0.0890          | 0.9542   | 0.9763        | 0.9769           | nan                | 0.9716               | 0.9811                   | nan           | 0.9487          | 0.9598              |
| 0.0305        | 22.67 | 340  | 0.0967          | 0.6352   | 0.9752        | 0.9762           | nan                | 0.9669               | 0.9834                   | 0.0           | 0.9468          | 0.9586              |
| 0.0219        | 24.0  | 360  | 0.0983          | 0.9538   | 0.9764        | 0.9767           | nan                | 0.9735               | 0.9792                   | nan           | 0.9483          | 0.9593              |
| 0.023         | 25.33 | 380  | 0.0940          | 0.6368   | 0.9771        | 0.9774           | nan                | 0.9743               | 0.9799                   | 0.0           | 0.9499          | 0.9606              |
| 0.0217        | 26.67 | 400  | 0.0973          | 0.6360   | 0.9767        | 0.9768           | nan                | 0.9758               | 0.9776                   | 0.0           | 0.9486          | 0.9595              |
| 0.0267        | 28.0  | 420  | 0.1023          | 0.6360   | 0.9770        | 0.9768           | nan                | 0.9792               | 0.9749                   | 0.0           | 0.9487          | 0.9593              |
| 0.0202        | 29.33 | 440  | 0.0955          | 0.6376   | 0.9783        | 0.9780           | nan                | 0.9802               | 0.9764                   | 0.0           | 0.9514          | 0.9615              |
| 0.0225        | 30.67 | 460  | 0.1016          | 0.6360   | 0.9763        | 0.9768           | nan                | 0.9727               | 0.9800                   | 0.0           | 0.9484          | 0.9595              |
| 0.0288        | 32.0  | 480  | 0.1026          | 0.6354   | 0.9756        | 0.9763           | nan                | 0.9697               | 0.9815                   | 0.0           | 0.9473          | 0.9588              |
| 0.0209        | 33.33 | 500  | 0.0977          | 0.6370   | 0.9771        | 0.9776           | nan                | 0.9735               | 0.9808                   | 0.0           | 0.9502          | 0.9609              |
| 0.0202        | 34.67 | 520  | 0.1005          | 0.6367   | 0.9772        | 0.9773           | nan                | 0.9762               | 0.9782                   | 0.0           | 0.9497          | 0.9604              |
| 0.0194        | 36.0  | 540  | 0.1032          | 0.6365   | 0.9771        | 0.9772           | nan                | 0.9766               | 0.9776                   | 0.0           | 0.9495          | 0.9601              |
| 0.0165        | 37.33 | 560  | 0.1013          | 0.6373   | 0.9777        | 0.9778           | nan                | 0.9769               | 0.9785                   | 0.0           | 0.9508          | 0.9612              |
| 0.0226        | 38.67 | 580  | 0.1005          | 0.6367   | 0.9771        | 0.9773           | nan                | 0.9752               | 0.9790                   | 0.0           | 0.9497          | 0.9604              |
| 0.0206        | 40.0  | 600  | 0.1032          | 0.6369   | 0.9773        | 0.9775           | nan                | 0.9757               | 0.9789                   | 0.0           | 0.9501          | 0.9607              |
| 0.016         | 41.33 | 620  | 0.1007          | 0.6373   | 0.9776        | 0.9777           | nan                | 0.9761               | 0.9790                   | 0.0           | 0.9506          | 0.9611              |
| 0.012         | 42.67 | 640  | 0.1048          | 0.6364   | 0.9768        | 0.9771           | nan                | 0.9748               | 0.9789                   | 0.0           | 0.9493          | 0.9601              |
| 0.0261        | 44.0  | 660  | 0.1073          | 0.6364   | 0.9770        | 0.9771           | nan                | 0.9760               | 0.9780                   | 0.0           | 0.9493          | 0.9600              |
| 0.0125        | 45.33 | 680  | 0.1088          | 0.6357   | 0.9761        | 0.9765           | nan                | 0.9727               | 0.9795                   | 0.0           | 0.9479          | 0.9591              |
| 0.0259        | 46.67 | 700  | 0.1073          | 0.6365   | 0.9770        | 0.9772           | nan                | 0.9760               | 0.9780                   | 0.0           | 0.9494          | 0.9601              |
| 0.0173        | 48.0  | 720  | 0.1052          | 0.6366   | 0.9770        | 0.9772           | nan                | 0.9755               | 0.9785                   | 0.0           | 0.9495          | 0.9602              |
| 0.0162        | 49.33 | 740  | 0.1077          | 0.6364   | 0.9770        | 0.9771           | nan                | 0.9758               | 0.9781                   | 0.0           | 0.9493          | 0.9600              |


### Framework versions

- Transformers 4.35.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0