tejaskamtam
commited on
Commit
•
bd2c029
1
Parent(s):
4dfadab
Model save
Browse files- README.md +103 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/electra-base-generator
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: electra-base-finetuned-xe_ey_fae
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# electra-base-finetuned-xe_ey_fae
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [google/electra-base-generator](https://huggingface.co/google/electra-base-generator) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.7175
|
21 |
+
- Accuracy: 0.6678
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 1e-05
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 100
|
44 |
+
- gradient_accumulation_steps: 2
|
45 |
+
- total_train_batch_size: 16
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 3.0
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
55 |
+
| 2.5359 | 0.06 | 500 | 2.0696 | 0.6228 |
|
56 |
+
| 2.1807 | 0.13 | 1000 | 1.9677 | 0.6352 |
|
57 |
+
| 2.1028 | 0.19 | 1500 | 1.9192 | 0.6415 |
|
58 |
+
| 2.0658 | 0.26 | 2000 | 1.8923 | 0.6451 |
|
59 |
+
| 2.0426 | 0.32 | 2500 | 1.8699 | 0.6478 |
|
60 |
+
| 2.0133 | 0.39 | 3000 | 1.8580 | 0.6490 |
|
61 |
+
| 1.9978 | 0.45 | 3500 | 1.8411 | 0.6507 |
|
62 |
+
| 1.9862 | 0.52 | 4000 | 1.8297 | 0.6524 |
|
63 |
+
| 1.9745 | 0.58 | 4500 | 1.8154 | 0.6545 |
|
64 |
+
| 1.9606 | 0.64 | 5000 | 1.8056 | 0.6557 |
|
65 |
+
| 1.9486 | 0.71 | 5500 | 1.8033 | 0.6560 |
|
66 |
+
| 1.9416 | 0.77 | 6000 | 1.7894 | 0.6581 |
|
67 |
+
| 1.9279 | 0.84 | 6500 | 1.7848 | 0.6582 |
|
68 |
+
| 1.9196 | 0.9 | 7000 | 1.7786 | 0.6593 |
|
69 |
+
| 1.9168 | 0.97 | 7500 | 1.7762 | 0.6592 |
|
70 |
+
| 1.9123 | 1.03 | 8000 | 1.7744 | 0.6597 |
|
71 |
+
| 1.8942 | 1.1 | 8500 | 1.7625 | 0.6611 |
|
72 |
+
| 1.9053 | 1.16 | 9000 | 1.7576 | 0.6623 |
|
73 |
+
| 1.898 | 1.22 | 9500 | 1.7588 | 0.6620 |
|
74 |
+
| 1.8896 | 1.29 | 10000 | 1.7518 | 0.6625 |
|
75 |
+
| 1.8796 | 1.35 | 10500 | 1.7557 | 0.6619 |
|
76 |
+
| 1.8838 | 1.42 | 11000 | 1.7511 | 0.6628 |
|
77 |
+
| 1.8869 | 1.48 | 11500 | 1.7437 | 0.6640 |
|
78 |
+
| 1.8756 | 1.55 | 12000 | 1.7425 | 0.6641 |
|
79 |
+
| 1.8775 | 1.61 | 12500 | 1.7409 | 0.6641 |
|
80 |
+
| 1.8757 | 1.68 | 13000 | 1.7372 | 0.6649 |
|
81 |
+
| 1.8616 | 1.74 | 13500 | 1.7387 | 0.6646 |
|
82 |
+
| 1.8675 | 1.8 | 14000 | 1.7335 | 0.6648 |
|
83 |
+
| 1.8725 | 1.87 | 14500 | 1.7288 | 0.6660 |
|
84 |
+
| 1.8678 | 1.93 | 15000 | 1.7305 | 0.6659 |
|
85 |
+
| 1.8611 | 2.0 | 15500 | 1.7256 | 0.6666 |
|
86 |
+
| 1.853 | 2.06 | 16000 | 1.7286 | 0.6661 |
|
87 |
+
| 1.8487 | 2.13 | 16500 | 1.7285 | 0.6659 |
|
88 |
+
| 1.8543 | 2.19 | 17000 | 1.7229 | 0.6668 |
|
89 |
+
| 1.8519 | 2.26 | 17500 | 1.7240 | 0.6670 |
|
90 |
+
| 1.851 | 2.32 | 18000 | 1.7275 | 0.6662 |
|
91 |
+
| 1.8547 | 2.38 | 18500 | 1.7197 | 0.6673 |
|
92 |
+
| 1.8476 | 2.45 | 19000 | 1.7164 | 0.6675 |
|
93 |
+
| 1.8444 | 2.51 | 19500 | 1.7214 | 0.6676 |
|
94 |
+
| 1.8544 | 2.58 | 20000 | 1.7217 | 0.6668 |
|
95 |
+
| 1.8491 | 2.64 | 20500 | 1.7175 | 0.6678 |
|
96 |
+
|
97 |
+
|
98 |
+
### Framework versions
|
99 |
+
|
100 |
+
- Transformers 4.36.2
|
101 |
+
- Pytorch 2.2.0+cu121
|
102 |
+
- Datasets 2.17.0
|
103 |
+
- Tokenizers 0.15.2
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 134986856
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a2f41fa975d2a66243cf70d44738cb6926ec4c04f82448058f18d9afc85d359
|
3 |
size 134986856
|