xiaowu0162
commited on
Commit
•
0113c8b
1
Parent(s):
7b1b343
Update README.md
Browse files
README.md
CHANGED
@@ -8,11 +8,25 @@ tags:
|
|
8 |
|
9 |
---
|
10 |
|
11 |
-
#
|
12 |
|
13 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
## Usage (Sentence-Transformers)
|
18 |
|
@@ -33,8 +47,6 @@ embeddings = model.encode(sentences)
|
|
33 |
print(embeddings)
|
34 |
```
|
35 |
|
36 |
-
|
37 |
-
|
38 |
## Usage (HuggingFace Transformers)
|
39 |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
40 |
|
@@ -71,15 +83,6 @@ print("Sentence embeddings:")
|
|
71 |
print(sentence_embeddings)
|
72 |
```
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
## Evaluation Results
|
77 |
-
|
78 |
-
<!--- Describe how your model was evaluated -->
|
79 |
-
|
80 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
81 |
-
|
82 |
-
|
83 |
## Training
|
84 |
The model was trained with the parameters:
|
85 |
|
@@ -123,7 +126,3 @@ SentenceTransformer(
|
|
123 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
124 |
)
|
125 |
```
|
126 |
-
|
127 |
-
## Citing & Authors
|
128 |
-
|
129 |
-
<!--- Describe where people can find more information -->
|
|
|
8 |
|
9 |
---
|
10 |
|
11 |
+
# keyphrase-mpnet-v1
|
12 |
|
13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model specialized for phrases: It maps phrases to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
15 |
+
This model is based on [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) and further fine-tuned on large-scale keyphrase data with SimCSE.
|
16 |
+
|
17 |
+
|
18 |
+
## Citing & Authors
|
19 |
+
Paper: [KPEval: Towards Fine-grained Semantic-based Evaluation of Keyphrase Extraction and Generation Systems](https://arxiv.org/abs/2303.15422)
|
20 |
+
```
|
21 |
+
@article{wu2023kpeval,
|
22 |
+
title={KPEval: Towards Fine-grained Semantic-based Evaluation of Keyphrase Extraction and Generation Systems},
|
23 |
+
author={Di Wu and Da Yin and Kai-Wei Chang},
|
24 |
+
year={2023},
|
25 |
+
eprint={2303.15422},
|
26 |
+
archivePrefix={arXiv},
|
27 |
+
primaryClass={cs.CL}
|
28 |
+
}
|
29 |
+
```
|
30 |
|
31 |
## Usage (Sentence-Transformers)
|
32 |
|
|
|
47 |
print(embeddings)
|
48 |
```
|
49 |
|
|
|
|
|
50 |
## Usage (HuggingFace Transformers)
|
51 |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
52 |
|
|
|
83 |
print(sentence_embeddings)
|
84 |
```
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
## Training
|
87 |
The model was trained with the parameters:
|
88 |
|
|
|
126 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
127 |
)
|
128 |
```
|
|
|
|
|
|
|
|