xiaowu0162 commited on
Commit
0113c8b
1 Parent(s): 7b1b343

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -18
README.md CHANGED
@@ -8,11 +8,25 @@ tags:
8
 
9
  ---
10
 
11
- # {MODEL_NAME}
12
 
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
- <!--- Describe your model here -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  ## Usage (Sentence-Transformers)
18
 
@@ -33,8 +47,6 @@ embeddings = model.encode(sentences)
33
  print(embeddings)
34
  ```
35
 
36
-
37
-
38
  ## Usage (HuggingFace Transformers)
39
  Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
40
 
@@ -71,15 +83,6 @@ print("Sentence embeddings:")
71
  print(sentence_embeddings)
72
  ```
73
 
74
-
75
-
76
- ## Evaluation Results
77
-
78
- <!--- Describe how your model was evaluated -->
79
-
80
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
-
82
-
83
  ## Training
84
  The model was trained with the parameters:
85
 
@@ -123,7 +126,3 @@ SentenceTransformer(
123
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
124
  )
125
  ```
126
-
127
- ## Citing & Authors
128
-
129
- <!--- Describe where people can find more information -->
 
8
 
9
  ---
10
 
11
+ # keyphrase-mpnet-v1
12
 
13
+ This is a [sentence-transformers](https://www.SBERT.net) model specialized for phrases: It maps phrases to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
+ This model is based on [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) and further fine-tuned on large-scale keyphrase data with SimCSE.
16
+
17
+
18
+ ## Citing & Authors
19
+ Paper: [KPEval: Towards Fine-grained Semantic-based Evaluation of Keyphrase Extraction and Generation Systems](https://arxiv.org/abs/2303.15422)
20
+ ```
21
+ @article{wu2023kpeval,
22
+ title={KPEval: Towards Fine-grained Semantic-based Evaluation of Keyphrase Extraction and Generation Systems},
23
+ author={Di Wu and Da Yin and Kai-Wei Chang},
24
+ year={2023},
25
+ eprint={2303.15422},
26
+ archivePrefix={arXiv},
27
+ primaryClass={cs.CL}
28
+ }
29
+ ```
30
 
31
  ## Usage (Sentence-Transformers)
32
 
 
47
  print(embeddings)
48
  ```
49
 
 
 
50
  ## Usage (HuggingFace Transformers)
51
  Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
52
 
 
83
  print(sentence_embeddings)
84
  ```
85
 
 
 
 
 
 
 
 
 
 
86
  ## Training
87
  The model was trained with the parameters:
88
 
 
126
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
127
  )
128
  ```