xiaowu0162
commited on
Commit
•
7d51217
1
Parent(s):
cfddce1
Update README.md
Browse files
README.md
CHANGED
@@ -41,7 +41,7 @@ Then you can use the model like this:
|
|
41 |
from sentence_transformers import SentenceTransformer
|
42 |
phrases = ["information retrieval", "text mining", "natural language processing"]
|
43 |
|
44 |
-
model = SentenceTransformer('
|
45 |
embeddings = model.encode(phrases)
|
46 |
print(embeddings)
|
47 |
```
|
@@ -65,8 +65,8 @@ def mean_pooling(model_output, attention_mask):
|
|
65 |
phrases = ["information retrieval", "text mining", "natural language processing"]
|
66 |
|
67 |
# Load model from HuggingFace Hub
|
68 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
69 |
-
model = AutoModel.from_pretrained('
|
70 |
|
71 |
# Tokenize sentences
|
72 |
encoded_input = tokenizer(phrases, padding=True, truncation=True, return_tensors='pt')
|
@@ -78,7 +78,7 @@ with torch.no_grad():
|
|
78 |
# Perform pooling. In this case, mean pooling.
|
79 |
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
80 |
|
81 |
-
print("
|
82 |
print(sentence_embeddings)
|
83 |
```
|
84 |
|
|
|
41 |
from sentence_transformers import SentenceTransformer
|
42 |
phrases = ["information retrieval", "text mining", "natural language processing"]
|
43 |
|
44 |
+
model = SentenceTransformer('uclanlp/keyphrase-mpnet-v1')
|
45 |
embeddings = model.encode(phrases)
|
46 |
print(embeddings)
|
47 |
```
|
|
|
65 |
phrases = ["information retrieval", "text mining", "natural language processing"]
|
66 |
|
67 |
# Load model from HuggingFace Hub
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained('uclanlp/keyphrase-mpnet-v1')
|
69 |
+
model = AutoModel.from_pretrained('uclanlp/keyphrase-mpnet-v1')
|
70 |
|
71 |
# Tokenize sentences
|
72 |
encoded_input = tokenizer(phrases, padding=True, truncation=True, return_tensors='pt')
|
|
|
78 |
# Perform pooling. In this case, mean pooling.
|
79 |
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
80 |
|
81 |
+
print("Phrase embeddings:")
|
82 |
print(sentence_embeddings)
|
83 |
```
|
84 |
|