File size: 804 Bytes
ac3f374 ea94f66 ac3f374 3b3b978 ac3f374 3b3b978 ac3f374 3b3b978 ac3f374 3b3b978 ac3f374 3b3b978 ac3f374 3b3b978 ac3f374 3b3b978 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
---
library_name: transformers
language:
- udm
---
# Zerpal-mBERT
## How to use
You can use this model directly with a pipeline for masked language modeling:
```py
from transformers import pipeline
unmasker = pipeline('fill-mask', model='udmurtNLP/zerpal-mbert', tokenizer='udmurtNLP/zerpal-mbert-tokenizer')
unmasker("Ӟечбур! Мынам нимы [MASK].")
```
Here is how to use this model to get the features of a given text in PyTorch:
```py
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('udmurtNLP/zerpal-mbert-tokenizer')
model = BertModel.from_pretrained("udmurtNLP/zerpal-mbert")
text = "Яратон, яратон, мар меда сыӵе тон?"
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
``` |