Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: Chinese
|
3 |
+
widget:
|
4 |
+
- text: "江苏警方通报特斯拉冲进店铺"
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
# Chinese RoBERTa-Base Model for NER
|
9 |
+
|
10 |
+
## Model description
|
11 |
+
|
12 |
+
The model is used for named entity recognition. You can download the model from the link [roberta-base-finetuned-cluener2020-chinese](https://huggingface.co/uer/roberta-base-finetuned-cluener2020-chinese).
|
13 |
+
|
14 |
+
## How to use
|
15 |
+
|
16 |
+
You can use this model directly with a pipeline for token classification :
|
17 |
+
|
18 |
+
```python
|
19 |
+
>>> from transformers import AutoModelForTokenClassification,AutoTokenizer,pipeline
|
20 |
+
>>> model = AutoModelForTokenClassification.from_pretrained('uer/roberta-base-finetuned-cluener2020-chinese')
|
21 |
+
>>> tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-finetuned-cluener2020-chinese')
|
22 |
+
>>> ner = pipeline('ner', model=model, tokenizer=tokenizer)
|
23 |
+
>>> ner("江苏警方通报特斯拉冲进店铺")
|
24 |
+
[
|
25 |
+
{'word': '江', 'score': 0.49153077602386475, 'entity': 'B-address', 'index': 1, 'start': 0, 'end': 1},
|
26 |
+
{'word': '苏', 'score': 0.6319217681884766, 'entity': 'I-address', 'index': 2, 'start': 1, 'end': 2},
|
27 |
+
{'word': '特', 'score': 0.5912262797355652, 'entity': 'B-company', 'index': 7, 'start': 6, 'end': 7},
|
28 |
+
{'word': '斯', 'score': 0.69145667552948, 'entity': 'I-company', 'index': 8, 'start': 7, 'end': 8},
|
29 |
+
{'word': '拉', 'score': 0.7054660320281982, 'entity': 'I-company', 'index': 9, 'start': 8, 'end': 9}
|
30 |
+
]
|
31 |
+
```
|
32 |
+
|
33 |
+
## Training data
|
34 |
+
|
35 |
+
[OCNLI](https://github.com/CLUEbenchmark/OCNLI) is used as training data. We only use the train set of the dataset.
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
The model is fine-tuned by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud TI-ONE](https://cloud.tencent.com/product/tione/). We fine-tune five epochs with a sequence length of 512 on the basis of the pre-trained model [chinese_roberta_L-12_H-768](https://huggingface.co/uer/chinese_roberta_L-12_H-768). At the end of each epoch, the model is saved when the best performance on development set is achieved.
|
40 |
+
|
41 |
+
```
|
42 |
+
python3 run_ner.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \
|
43 |
+
--vocab_path models/google_zh_vocab.txt \
|
44 |
+
--train_path datasets/cluener2020/train.tsv \
|
45 |
+
--dev_path datasets/cluener2020/dev.tsv \
|
46 |
+
--label2id_path datasets/cluener2020/label2id.json \
|
47 |
+
--output_model_path models/cluener2020_classifier_model.bin \
|
48 |
+
--learning_rate 3e-5 --batch_size 32 --epochs_num 5 --seq_length 512 \
|
49 |
+
--embedding word_pos_seg --encoder transformer --mask fully_visible
|
50 |
+
```
|
51 |
+
|
52 |
+
Finally, we convert the pre-trained model into Huggingface's format:
|
53 |
+
|
54 |
+
```
|
55 |
+
python3 scripts/convert_bert_token_classification_from_uer_to_huggingface.py --input_model_path models/cluener2020_classifier_model.bin \
|
56 |
+
--output_model_path pytorch_model.bin \
|
57 |
+
--layers_num 12
|
58 |
+
```
|
59 |
+
|
60 |
+
### BibTeX entry and citation info
|
61 |
+
|
62 |
+
```
|
63 |
+
@article{zhao2019uer,
|
64 |
+
title={UER: An Open-Source Toolkit for Pre-training Models},
|
65 |
+
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
|
66 |
+
journal={EMNLP-IJCNLP 2019},
|
67 |
+
pages={241},
|
68 |
+
year={2019}
|
69 |
+
}
|
70 |
+
```
|