ulysses115
commited on
Commit
•
883b1e0
1
Parent(s):
b2350c3
Upload inference.ipynb with huggingface_hub
Browse files- inference.ipynb +200 -0
inference.ipynb
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"%matplotlib inline\n",
|
10 |
+
"import matplotlib.pyplot as plt\n",
|
11 |
+
"import IPython.display as ipd\n",
|
12 |
+
"\n",
|
13 |
+
"import os\n",
|
14 |
+
"import json\n",
|
15 |
+
"import math\n",
|
16 |
+
"import torch\n",
|
17 |
+
"from torch import nn\n",
|
18 |
+
"from torch.nn import functional as F\n",
|
19 |
+
"from torch.utils.data import DataLoader\n",
|
20 |
+
"\n",
|
21 |
+
"import commons\n",
|
22 |
+
"import utils\n",
|
23 |
+
"from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate\n",
|
24 |
+
"from models import SynthesizerTrn\n",
|
25 |
+
"from text.symbols import symbols\n",
|
26 |
+
"from text import text_to_sequence\n",
|
27 |
+
"\n",
|
28 |
+
"from scipy.io.wavfile import write\n",
|
29 |
+
"\n",
|
30 |
+
"\n",
|
31 |
+
"def get_text(text, hps):\n",
|
32 |
+
" text_norm = text_to_sequence(text, hps.data.text_cleaners)\n",
|
33 |
+
" if hps.data.add_blank:\n",
|
34 |
+
" text_norm = commons.intersperse(text_norm, 0)\n",
|
35 |
+
" text_norm = torch.LongTensor(text_norm)\n",
|
36 |
+
" return text_norm"
|
37 |
+
]
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"cell_type": "markdown",
|
41 |
+
"metadata": {},
|
42 |
+
"source": [
|
43 |
+
"## LJ Speech"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"cell_type": "code",
|
48 |
+
"execution_count": null,
|
49 |
+
"metadata": {},
|
50 |
+
"outputs": [],
|
51 |
+
"source": [
|
52 |
+
"hps = utils.get_hparams_from_file(\"./configs/ljs_base.json\")"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "code",
|
57 |
+
"execution_count": null,
|
58 |
+
"metadata": {},
|
59 |
+
"outputs": [],
|
60 |
+
"source": [
|
61 |
+
"net_g = SynthesizerTrn(\n",
|
62 |
+
" len(symbols),\n",
|
63 |
+
" hps.data.filter_length // 2 + 1,\n",
|
64 |
+
" hps.train.segment_size // hps.data.hop_length,\n",
|
65 |
+
" **hps.model).cuda()\n",
|
66 |
+
"_ = net_g.eval()\n",
|
67 |
+
"\n",
|
68 |
+
"_ = utils.load_checkpoint(\"/path/to/pretrained_ljs.pth\", net_g, None)"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": null,
|
74 |
+
"metadata": {},
|
75 |
+
"outputs": [],
|
76 |
+
"source": [
|
77 |
+
"stn_tst = get_text(\"VITS is Awesome!\", hps)\n",
|
78 |
+
"with torch.no_grad():\n",
|
79 |
+
" x_tst = stn_tst.cuda().unsqueeze(0)\n",
|
80 |
+
" x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n",
|
81 |
+
" audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()\n",
|
82 |
+
"ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "markdown",
|
87 |
+
"metadata": {},
|
88 |
+
"source": [
|
89 |
+
"## VCTK"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"execution_count": null,
|
95 |
+
"metadata": {},
|
96 |
+
"outputs": [],
|
97 |
+
"source": [
|
98 |
+
"hps = utils.get_hparams_from_file(\"./configs/vctk_base.json\")"
|
99 |
+
]
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"cell_type": "code",
|
103 |
+
"execution_count": null,
|
104 |
+
"metadata": {},
|
105 |
+
"outputs": [],
|
106 |
+
"source": [
|
107 |
+
"net_g = SynthesizerTrn(\n",
|
108 |
+
" len(symbols),\n",
|
109 |
+
" hps.data.filter_length // 2 + 1,\n",
|
110 |
+
" hps.train.segment_size // hps.data.hop_length,\n",
|
111 |
+
" n_speakers=hps.data.n_speakers,\n",
|
112 |
+
" **hps.model).cuda()\n",
|
113 |
+
"_ = net_g.eval()\n",
|
114 |
+
"\n",
|
115 |
+
"_ = utils.load_checkpoint(\"/path/to/pretrained_vctk.pth\", net_g, None)"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"cell_type": "code",
|
120 |
+
"execution_count": null,
|
121 |
+
"metadata": {},
|
122 |
+
"outputs": [],
|
123 |
+
"source": [
|
124 |
+
"stn_tst = get_text(\"VITS is Awesome!\", hps)\n",
|
125 |
+
"with torch.no_grad():\n",
|
126 |
+
" x_tst = stn_tst.cuda().unsqueeze(0)\n",
|
127 |
+
" x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n",
|
128 |
+
" sid = torch.LongTensor([4]).cuda()\n",
|
129 |
+
" audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()\n",
|
130 |
+
"ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))"
|
131 |
+
]
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"cell_type": "markdown",
|
135 |
+
"metadata": {},
|
136 |
+
"source": [
|
137 |
+
"### Voice Conversion"
|
138 |
+
]
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"cell_type": "code",
|
142 |
+
"execution_count": null,
|
143 |
+
"metadata": {},
|
144 |
+
"outputs": [],
|
145 |
+
"source": [
|
146 |
+
"dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)\n",
|
147 |
+
"collate_fn = TextAudioSpeakerCollate()\n",
|
148 |
+
"loader = DataLoader(dataset, num_workers=8, shuffle=False,\n",
|
149 |
+
" batch_size=1, pin_memory=True,\n",
|
150 |
+
" drop_last=True, collate_fn=collate_fn)\n",
|
151 |
+
"data_list = list(loader)"
|
152 |
+
]
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"cell_type": "code",
|
156 |
+
"execution_count": null,
|
157 |
+
"metadata": {},
|
158 |
+
"outputs": [],
|
159 |
+
"source": [
|
160 |
+
"with torch.no_grad():\n",
|
161 |
+
" x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cuda() for x in data_list[0]]\n",
|
162 |
+
" sid_tgt1 = torch.LongTensor([1]).cuda()\n",
|
163 |
+
" sid_tgt2 = torch.LongTensor([2]).cuda()\n",
|
164 |
+
" sid_tgt3 = torch.LongTensor([4]).cuda()\n",
|
165 |
+
" audio1 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0][0,0].data.cpu().float().numpy()\n",
|
166 |
+
" audio2 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt2)[0][0,0].data.cpu().float().numpy()\n",
|
167 |
+
" audio3 = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt3)[0][0,0].data.cpu().float().numpy()\n",
|
168 |
+
"print(\"Original SID: %d\" % sid_src.item())\n",
|
169 |
+
"ipd.display(ipd.Audio(y[0].cpu().numpy(), rate=hps.data.sampling_rate, normalize=False))\n",
|
170 |
+
"print(\"Converted SID: %d\" % sid_tgt1.item())\n",
|
171 |
+
"ipd.display(ipd.Audio(audio1, rate=hps.data.sampling_rate, normalize=False))\n",
|
172 |
+
"print(\"Converted SID: %d\" % sid_tgt2.item())\n",
|
173 |
+
"ipd.display(ipd.Audio(audio2, rate=hps.data.sampling_rate, normalize=False))\n",
|
174 |
+
"print(\"Converted SID: %d\" % sid_tgt3.item())\n",
|
175 |
+
"ipd.display(ipd.Audio(audio3, rate=hps.data.sampling_rate, normalize=False))"
|
176 |
+
]
|
177 |
+
}
|
178 |
+
],
|
179 |
+
"metadata": {
|
180 |
+
"kernelspec": {
|
181 |
+
"display_name": "Python 3",
|
182 |
+
"language": "python",
|
183 |
+
"name": "python3"
|
184 |
+
},
|
185 |
+
"language_info": {
|
186 |
+
"codemirror_mode": {
|
187 |
+
"name": "ipython",
|
188 |
+
"version": 3
|
189 |
+
},
|
190 |
+
"file_extension": ".py",
|
191 |
+
"mimetype": "text/x-python",
|
192 |
+
"name": "python",
|
193 |
+
"nbconvert_exporter": "python",
|
194 |
+
"pygments_lexer": "ipython3",
|
195 |
+
"version": "3.7.7"
|
196 |
+
}
|
197 |
+
},
|
198 |
+
"nbformat": 4,
|
199 |
+
"nbformat_minor": 4
|
200 |
+
}
|