File size: 22,928 Bytes
a8e69a1 6139274 ff709d3 a8e69a1 6139274 56ad836 6139274 a8e69a1 6139274 8485cfe 6139274 6bf62be 6139274 1f9a38a 6139274 1cfff10 6139274 1cfff10 6139274 1cfff10 723dff6 1cfff10 6139274 723dff6 6139274 b60ceaf 56ad836 24a558c 56ad836 b60ceaf d7a1800 b60ceaf 56ad836 e23c933 064fa95 b60ceaf d665fc0 b0f2819 aeb84d9 b0f2819 c8e6ab0 b0f2819 b60ceaf e23c933 b60ceaf aeb84d9 e23c933 aeb84d9 b60ceaf e23c933 ff709d3 e23c933 ff709d3 8485cfe 2ade94d 8485cfe e6fb94c 8485cfe 4a35c54 c69917a 6139274 d7a1800 6139274 3d51a0e 6139274 3d51a0e 6139274 3d51a0e 16b786c 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e ed0f76a 3d51a0e 16b786c d7a1800 bd8c8f4 16b786c bd8c8f4 16b786c bd8c8f4 16b786c d7a1800 a804d84 bd8c8f4 16b786c 5e73f5f d7a1800 e26b2ec 5e73f5f 16b786c e26b2ec d7a1800 e26b2ec 16b786c e26b2ec d7a1800 e26b2ec 16b786c a804d84 d7a1800 16b786c a804d84 16b786c a804d84 6139274 1179992 46029bd c939647 be9bccf 7711015 ef3aca2 46029bd 89f42a0 6139274 e8567b2 6bf62be 6139274 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 |
---
language: en
tags:
- Recommendation
license: apache-2.0
datasets:
- surprise
- numpy
- keras
- pandas
thumbnail: https://github.com/Marcosdib/S2Query/Classification_Architecture_model.png
---
![MCTIimg](https://antigo.mctic.gov.br/mctic/export/sites/institucional/institucional/entidadesVinculadas/conselhos/pag-old/RODAPE_MCTI.png)
# MCTI Recommendation Task (uncased) DRAFT
Disclaimer: The Brazilian Ministry of Science, Technology, and Innovation (MCTI) has partially supported this project.
The model [NLP MCTI Recommendation Multi](https://huggingface.co/spaces/unb-lamfo-nlp-mcti/nlp-mcti-lda-recommender) is part of the project [Research Financing Product Portfolio (FPP)](https://huggingface.co/unb-lamfo-nlp-mcti) focuses
on the task of Recommendation and explores different machine learning strategies that provide suggestions of items that are likely to be handy for a particular individual. Several methods were faced against each other to compare the error estimatives.
Using LDA model, a simulated dataset was created.
## According to the abstract,
Current model card disposes model's description and it's classes. Also, inteded uses are described along with a "how to use" section, exposing necessary conditions for the data used.
Further in the card, data and it's limitation and bias were discussed. Tables along the page supports the information and tests that were made.
How the recommendation is made, datasets used and the benchmarks generated are all set all over the model card.
## Model description
The surprise library provides 11 classifier models that try to predict the classification of training data based on several different collaborative-filtering techniques.
The models provided with a brief explanation in English are mentioned below, for more information please refer to the package [documentation](https://surprise.readthedocs.io/en/stable/prediction_algorithms_package.html).
random_pred.NormalPredictor: Algorithm predicting a random rating based on the distribution of the training set, which is assumed to be normal.
baseline_only.BaselineOnly: Algorithm predicting the baseline estimate for given user and item.
knns.KNNBasic: A basic collaborative filtering algorithm.
knns.KNNWithMeans: A basic collaborative filtering algorithm, taking into account the mean ratings of each user.
knns.KNNWithZScore: A basic collaborative filtering algorithm, taking into account the z-score normalization of each user.
knns.KNNBaseline: A basic collaborative filtering algorithm taking into account a baseline rating.
matrix_factorization.SVD: The famous SVD algorithm, as popularized by Simon Funk during the Netflix Prize.
matrix_factorization.SVDpp: The SVD++ algorithm, an extension of SVD taking into account implicit ratings.
matrix_factorization.NMF: A collaborative filtering algorithm based on Non-negative Matrix Factorization.
slope_one.SlopeOne: A simple yet accurate collaborative filtering algorithm.
co_clustering.CoClustering: A collaborative filtering algorithm based on co-clustering.
It is possible to pass a custom dataframe as an argument to this class. The dataframe in question needs to have 3 columns with the following name: ['userID', 'itemID', 'rating'].
```python
class Method:
def __init__(self,df):
self.df=df
self.available_methods=[
'surprise.NormalPredictor',
'surprise.BaselineOnly',
'surprise.KNNBasic',
'surprise.KNNWithMeans',
'surprise.KNNWithZScore',
'surprise.KNNBaseline',
'surprise.SVD',
'surprise.SVDpp',
'surprise.NMF',
'surprise.SlopeOne',
'surprise.CoClustering',
]
def show_methods(self):
print('The avaliable methods are:')
for i,method in enumerate(self.available_methods):
print(str(i)+': '+method)
def run(self,the_method):
self.the_method=the_method
if(self.the_method[0:8]=='surprise'):
self.run_surprise()
elif(self.the_method[0:6]=='Gensim'):
self.run_gensim()
elif(self.the_method[0:13]=='Transformers-'):
self.run_transformers()
else:
print('This method is not defined! Try another one.')
def run_surprise(self):
from surprise import Reader
from surprise import Dataset
from surprise.model_selection import train_test_split
reader = Reader(rating_scale=(1, 5))
data = Dataset.load_from_df(self.df[['userID', 'itemID', 'rating']], reader)
trainset, testset = train_test_split(data, test_size=.30)
the_method=self.the_method.replace("surprise.", "")
eval(f"exec('from surprise import {the_method}')")
the_algorithm=locals()[the_method]()
the_algorithm.fit(trainset)
self.predictions=the_algorithm.test(testset)
list_predictions=[(uid,iid,r_ui,est) for uid,iid,r_ui,est,_ in self.predictions]
self.predictions_df = pd.DataFrame(list_predictions, columns =['user_id', 'item_id', 'rating','predicted_rating'])
```
Every model was used and evaluated. When faced with each other different methods presented different error estimatives.
The surprise library provides 4 different methods to assess the accuracy of the ratings prediction. Those are: rmse, mse, mae and fcp. For further discussion on each metric please visit the package documentation.
```python
class Evaluator:
def __init__(self,predictions_df):
self.available_evaluators=['surprise.rmse','surprise.mse',
'surprise.mae','surprise.fcp']
self.predictions_df=predictions_df
def show_evaluators(self):
print('The avaliable evaluators are:')
for i,evaluator in enumerate(self.available_evaluators):
print(str(i)+': '+evaluator)
def run(self,the_evaluator):
self.the_evaluator=the_evaluator
if(self.the_evaluator[0:8]=='surprise'):
self.run_surprise()
else:
print('This evaluator is not available!')
def run_surprise(self):
import surprise
from surprise import accuracy
predictions=[surprise.prediction_algorithms.predictions.Prediction(row['user_id'],row['item_id'],row['rating'],row['predicted_rating'],{}) for index,row in self.predictions_df.iterrows()]
self.predictions=predictions
self.the_evaluator= 'accuracy.' + self.the_evaluator.replace("surprise.", "")
self.acc = eval(f'{self.the_evaluator}(predictions,verbose=True)')
```
## Intended uses
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://www.google.com) to look for
fine-tuned versions of a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like XXX.
### How to use
The datasets for collaborative filtering must be:
- The dataframe containing the ratings.
- It must have three columns, corresponding to the user (raw) ids,
the item (raw) ids, and the ratings, in this order.
```python
>>> import pandas as pd
>>> import numpy as np
class Data:
````
The databases (ml_100k, ml_1m and jester) are built-in the surprise package for
collaborative-filtering.
```python
def_init_(self):
self.available_databases=['ml_100k', 'ml_1m','jester', 'lda_topics', 'lda_rankings', 'uniform']
def show_available_databases(self):
print('The avaliable database are:')
for i,database in enumerate(self.available_databases):
print(str(i)+': '+database)
def read_data(self,database_name):
self.database_name=database_name
self.the_data_reader= getattr(self, 'read_'+database_name.lower())
self.the_data_reader()
def read_ml_100k(self):
from surprise import Dataset
data = Dataset.load_builtin('ml-100k')
self.df = pd.DataFrame(data.__dict__['raw_ratings'], columns=['user_id','item_id','rating','timestamp'])
self.df.drop(columns=['timestamp'],inplace=True)
self.df.rename({'user_id':'userID','item_id':'itemID'},axis=1,inplace=True)
def read_ml_1m(self):
from surprise import Dataset
data = Dataset.load_builtin('ml-1m')
self.df = pd.DataFrame(data.__dict__['raw_ratings'], columns=['user_id','item_id','rating','timestamp'])
self.df.drop(columns=['timestamp'],inplace=True)
self.df.rename({'user_id':'userID','item_id':'itemID'},axis=1,inplace=True)
def read_jester(self):
from surprise import Dataset
data = Dataset.load_builtin('jester')
self.df = pd.DataFrame(data.__dict__['raw_ratings'], columns=['user_id','item_id','rating','timestamp'])
self.df.drop(columns=['timestamp'],inplace=True)
self.df.rename({'user_id':'userID','item_id':'itemID'},axis=1,inplace=True)
```
Hyperparameters -
`n_users` : number of simulated users in the database;
`n_ratings` : number of simulated rating events in the database.
This is a fictional dataset based in the choice of an uniformly distributed random rating(from 1 to 5) for one of the simulated users of the recommender-system that is being designed in this research project.
```python
def read_uniform(self):
n_users = 20
n_ratings = 10000
import random
opo = pd.read_csv('../oportunidades.csv')
df = [(random.randrange(n_users), random.randrange(len(opo)), random.randrange(1,5)) for i in range(n_ratings)]
self.df = pd.DataFrame(df, columns = ['userID', 'itemID', 'rating'])
```
Hyperparameters -
n_users` : number of simulated users in the database;
n_ratings` : number of simulated rating events in the database.
This first LDA based dataset builds a model with K = `n_users` topics. LDA topics are used as proxies for simulated users with different clusters of interest. At first a random opportunity is chosen, than the amount of a randomly chosen topic inside the description is multiplied by five. The ceiling operation of this result is the rating that the fictional user will give to that opportunity. Because the amount of each topic predicted by the model is disollved among various topics, it is very rare to find an opportunity that has a higher LDA value. The consequence is that this dataset has really low volatility and the major part of ratings are equal to 1.
```python
def read_lda_topics(self):
n_users = 20
n_ratings = 10000
import gensim
import random
import math
opo = pd.read_csv('../oportunidades_results.csv')
# opo = opo.iloc[np.where(opo['opo_brazil']=='Y')]
try:
lda_model = gensim.models.ldamodel.LdaModel.load(f'models/lda_model{n_users}.model')
except:
import generate_users
generate_users.gen_model(n_users)
lda_model = gensim.models.ldamodel.LdaModel.load(f'models/lda_model{n_users}.model')
df = []
for i in range(n_ratings):
opo_n = random.randrange(len(opo))
txt = opo.loc[opo_n,'opo_texto']
opo_bow = lda_model.id2word.doc2bow(txt.split())
topics = lda_model.get_document_topics(opo_bow)
topics = {topic[0]:topic[1] for topic in topics}
user = random.sample(topics.keys(), 1)[0]
rating = math.ceil(topics[user]*5)
df.append((user, opo_n, rating))
self.df = pd.DataFrame(df, columns = ['userID', 'itemID', 'rating'])
def read_lda_rankings(self):
n_users = 9
n_ratings = 1000
import gensim
import random
import math
import tqdm
opo = pd.read_csv('../oportunidades.csv')
opo = opo.iloc[np.where(opo['opo_brazil']=='Y')]
opo.index = range(len(opo))
path = f'models/output_linkedin_cle_lda_model_{n_users}_topics_symmetric_alpha_auto_beta'
lda_model = gensim.models.ldamodel.LdaModel.load(path)
df = []
pbar = tqdm.tqdm(total= n_ratings)
for i in range(n_ratings):
opo_n = random.randrange(len(opo))
txt = opo.loc[opo_n,'opo_texto']
opo_bow = lda_model.id2word.doc2bow(txt.split())
topics = lda_model.get_document_topics(opo_bow)
topics = {topic[0]:topic[1] for topic in topics}
prop = pd.DataFrame([topics], index=['prop']).T.sort_values('prop', ascending=True)
prop['rating'] = range(1, len(prop)+1)
prop['rating'] = prop['rating']/len(prop)
prop['rating'] = prop['rating'].apply(lambda x: math.ceil(x*5))
prop.reset_index(inplace=True)
prop = prop.sample(1)
df.append((prop['index'].values[0], opo_n, prop['rating'].values[0]))
pbar.update(1)
pbar.close()
self.df = pd.DataFrame(df, columns = ['userID', 'itemID', 'rating'])
```
### Limitations and bias
In this model we have faced some obstacles that we had overcome, but some of those, by the nature of the project, couldn't be totally solved.
Databases containing profiles of possible users of the planned prototype are not available.
For this reason, it was necessary to carry out simulations in order to represent the interests of these users, so that the recommendation system could be modeled.
A simulation of clusters of latent interests was realized, based on topics present in the texts describing financial products. Due the fact that the dataset was build it by ourselves, there was no interaction yet between a user and the dataset, therefore we don't have
realistic ratings, making the results less believable.
Later on, we have used a database of scrappings of linkedin profiles.
The problem is that the profiles that linkedin shows is biased, so the profiles that appears was geographically closed, or related to the users organization and email.
## Training data
To train the Latent Dirichlet allocation (LDA) model, it was used a database of a scrapping of Researchers profiles on Linkedin.
## Training procedure
## Evaluation results
## Checkpoints
- Example
```python
data=Data()
data.show_available_databases()
data.read_data('ml_100k')
method=Method(data.df)
method.show_methods()
method.run('surprise.KNNWithMeans')
predictions_df=method.predictions_df
evaluator=Evaluator(predictions_df)
evaluator.show_evaluators()
evaluator.run('surprise.mse')
```
The avaliable database are:
0: ml_100k
1: ml_1m
2: jester
3: lda_topics
4: lda_rankings
5: uniform
The avaliable methods are:
0: surprise.NormalPredictor
1: surprise.BaselineOnly
2: surprise.KNNBasic
3: surprise.KNNWithMeans
4: surprise.KNNWithZScore
5: surprise.KNNBaseline
6: surprise.SVD
7: surprise.SVDpp
8: surprise.NMF
9: surprise.SlopeOne
10: surprise.CoClustering
Computing the msd similarity matrix...
Done computing similarity matrix.
The avaliable evaluators are:
0: surprise.rmse
1: surprise.mse
2: surprise.mae
3: surprise.fcp
MSE: 0.9146
Next, we have the code that builds the table with the accuracy metrics for all rating prediction models built-in the surprise package. The expected return of this function is a pandas dataframe (11x4) corresponding to the 11 classifier models and 4 different accuracy metrics.
```python
def model_table(label):
import tqdm
table = pd.DataFrame()
data=Data()
data.read_data(label)
method=Method(data.df)
for m in method.available_methods:
print(m)
method.run(m)
predictions_df=method.predictions_df
evaluator=Evaluator(predictions_df)
metrics = []
for e in evaluator.available_evaluators:
evaluator.run(e)
metrics.append(evaluator.acc)
table = table.append(dict(zip(evaluator.available_evaluators,metrics)),ignore_index=True)
table.index = [x[9:] for x in method.available_methods]
table.columns = [x[9:].upper() for x in evaluator.available_evaluators]
return table
import sys, os
sys.stdout = open(os.devnull, 'w') # Codigo para desativar os prints
uniform = model_table('uniform')
#topics = model_table('lda_topics')
ranking = model_table('lda_rankings')
sys.stdout = sys.__stdout__ # Codigo para reativar os prints
```
- Usage Example
In this section it will be explained how the recommendation is made for the user.
```python
import gradio as gr
import random
import pandas as pd
opo = pd.read_csv('oportunidades_results.csv', lineterminator='\n')
# opo = opo.iloc[np.where(opo['opo_brazil']=='Y')]
simulation = pd.read_csv('simulation2.csv')
userID = max(simulation['userID']) + 1
This function, creates the string that it will be displayed to the user on the app, showing the opportunities title, link and the resume.
def build_display_text(opo_n):
title = opo.loc[opo_n]['opo_titulo']
link = opo.loc[opo_n]['link']
summary = opo.loc[opo_n]['facebook-bart-large-cnn_results']
display_text = f"**{title}**\n\nURL:\n{link}\n\nSUMMARY:\n{summary}"
return display_text
```
Here it will be generate 4 random opportunities.
```python
opo_n_one = random.randrange(len(opo))
opo_n_two = random.randrange(len(opo))
opo_n_three = random.randrange(len(opo))
opo_n_four = random.randrange(len(opo))
evaluated = []
```
The next function, is the "predict_next", that accepts an option and a rating.
```python
def predict_next(option, nota):
global userID
global opo_n_one
global opo_n_two
global opo_n_three
global opo_n_four
global evaluated
global opo
global simulation
```
Here it will be taken the number, on our database, of the rated opportunity.
```python
selected = [opo_n_one, opo_n_two, opo_n_three, opo_n_four][int(option)-1]
```
Here is created a new database called simulation, that takes the previous simulation then adds a new line with te ID of the user, the rated item and the rate. integrates the selected opportunity.
```python
simulation = simulation.append({'userID': userID, 'itemID': selected, 'rating': nota}, ignore_index=True)
evaluated.append(selected)
from surprise import Reader
reader = Reader(rating_scale=(1, 5))
from surprise import Dataset
data = Dataset.load_from_df(simulation[['userID', 'itemID', 'rating']], reader)
trainset = data.build_full_trainset()
from surprise import SVDpp
svdpp = SVDpp()
svdpp.fit(trainset)
items = list()
est = list()
for i in range(len(opo)):
if i not in evaluated:
items.append(i)
est.append(svdpp.predict(userID, i).est)
opo_n_one = items[est.index(sorted(est)[-1])]
opo_n_two = items[est.index(sorted(est)[-2])]
opo_n_three = items[est.index(sorted(est)[-3])]
opo_n_four = items[est.index(sorted(est)[-4])]
return build_display_text(opo_n_one), build_display_text(opo_n_two), build_display_text(opo_n_three), build_display_text(opo_n_four)
```
Here we have the interation of gradio, that allows the construction of the app.
```python
with gr.Blocks() as demo:
with gr.Row():
one_opo = gr.Textbox(build_display_text(opo_n_one), label='Oportunidade 1')
two_opo = gr.Textbox(build_display_text(opo_n_two), label='Oportunidade 2')
with gr.Row():
three_opo = gr.Textbox(build_display_text(opo_n_three), label='Oportunidade 3')
four_opo = gr.Textbox(build_display_text(opo_n_four), label='Oportunidade 4')
with gr.Row():
option = gr.Radio(['1', '2', '3', '4'], label='Opção', value = '1')
with gr.Row():
nota = gr.Slider(1,5,step=1,label="Nota 1")
with gr.Row():
confirm = gr.Button("Confirmar")
confirm.click(fn=predict_next,
inputs=[option, nota],
outputs=[one_opo, two_opo, three_opo, four_opo])
if __name__ == "__main__":
demo.launch()
```
## Benchmarks
```python
# LDA-GENERATED DATASET
ranking
```
| | RMSE | MSE | MAE | FCP |
|-----------------|-----------|-----------|-----------|-----------|
| NormalPredictor | 1.820737 | 3.315084 | 1.475522 | 0.514134 |
| BaselineOnly | 1.072843 | 1.150992 | 0.890233 | 0.556560 |
| KNNBasic | 1.232248 | 1.518436 | 0.936799 | 0.648604 |
| KNNWithMeans | 1.124166 | 1.263750 | 0.808329 | 0.597148 |
| KNNWithZScore | 1.056550 | 1.116299 | 0.750004 | 0.669651 |
| KNNBaseline | 1.134660 | 1.287454 | 0.825161 | 0.614270 |
| SVD | 0.977468 | 0.955444 | 0.757485 | 0.723829 |
| SVDpp | 0.843065 | 0.710758 | 0.670516 | 0.671737 |
| NMF | 1.122684 | 1.260420 | 0.722101 | 0.688728 |
| SlopeOne | 1.073552 | 1.152514 | 0.747142 | 0.651937 |
| CoClustering | 1.293383 | 1.672838 | 1.007951 | 0.494174 |
```python
# BENCHMARK DATASET
uniform
```
| | RMSE | MSE | MAE | FCP |
|-----------------|-----------|-----------|-----------|-----------|
| NormalPredictor | 1.508925 | 2.276854 | 1.226758 | 0.503723 |
| BaselineOnly | 1.153331 | 1.330172 | 1.022732 | 0.506818 |
| KNNBasic | 1.205058 | 1.452165 | 1.026591 | 0.501168 |
| KNNWithMeans | 1.202024 | 1.444862 | 1.028149 | 0.503527 |
| KNNWithZScore | 1.216041 |1.478756 | 1.041070 | 0.501582 |
| KNNBaseline | 1.225609 | 1.502117 | 1.048107 | 0.498198 |
| SVD | 1.176273 | 1.383619 | 1.013285 | 0.502067 |
| SVDpp | 1.192619 | 1.422340 | 1.018717 | 0.500909 |
| NMF | 1.338216 | 1.790821 | 1.120604 | 0.492944 |
| SlopeOne | 1.224219 | 1.498713 | 1.047170 | 0.494298 |
| CoClustering | 1.223020 | 1.495778 | 1.033699 | 0.518509 |
### BibTeX entry and citation info
```bibtex
@unpublished{recommend22,
author ={Jo\~{a}o Gabriel de Moraes Souza. and Daniel Oliveira Cajueiro. and Johnathan de O. Milagres. and Vin\´{i}cius de Oliveira Watanabe. and V\´{i}tor Bandeira Borges. and Victor Rafael Celestino.},
title ={A comprehensive review of recommendation systems: method, data, evaluation and coding},
}
```
<a href="https://huggingface.co/exbert/?model=bert-base-uncased">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a> |