{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a8127c12a40>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690568936221985834, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADxxKz9hecg+2qngPlV7Tz8qdKU/ehNQwLdwkT9llDO/xdoLP/jrX7wUgq8/bHFXQFFC+z7vCdW/d0HOvvYiI8AqcDI/HMCdvmkvGT9vBiM/dhJIP5VfxD98k0+/dEF8wPL6hL81JS4/YM//Pp4ae7/saYE+QXvPPealBT9C/oc/oBgPvhVFvz48k48+ZccJvYCwDD/7yGW9wg4xvvQnW7+AT4O+NxqfP7jq7b64mzc/vwS9Pg7o1T8VQBY9t/kjv/4JHr+AYpq+wKGyPvVHZj7y+oS/NSUuP2DP/z7pfoI/HIoSP9TMoz7COe4+gZSLPwoiCr7GplM/86sQPx2cL77SPA0/6XSbvUPBHjzkgx/AhNGBvVtxqj/uqEa/h+F0P4kEKD7pK6c/YS0zPhyH7r8v6MY/Sc5aP2iedD8vNws/8vqEvzUlLj9gz/8+6X6CPzBJcj6Heyw+kycCPyMzWT8iLXk/Eu5pPwSlgj9xvFA+82wNP6hyrD3e65o/gpsQP3jq8z65Dry/u0v0vhBlA78xrEM/qfQ3v2ai1T7EAKS9NW0lvt109j4X5Yq/zKwSPpppdj8nKry/YM//Pp4ae7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAWElg1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAu30PvQAAAADVYe+/AAAAAOVbEjwAAAAA/HzmPwAAAAC6iMA9AAAAABoV/D8AAAAA+fvCPQAAAADIY9q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATmL9NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDn1+DsAAAAAqBjmvwAAAACafAQ+AAAAALSj2z8AAAAAZk+4PQAAAAAX6OE/AAAAAKGzAz4AAAAAk8/mvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQf8jYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICZwZ69AAAAAPj89L8AAAAAEFghPQAAAACzwABAAAAAAPr7gj0AAAAAUsj8PwAAAAA2Awm+AAAAALV0578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACRbd81AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAv4NXPQAAAABwRgHAAAAAAG1axTwAAAAAu5/8PwAAAACdFQ8+AAAAANmC3D8AAAAAhugNPQAAAABfrva/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJv5u6ClJpaMAWyUTegDjAF0lEdAqVY3hCMP0HV9lChoBkdAm3qFF+d9UmgHTegDaAhHQKlW3VZLZjB1fZQoaAZHQIRsP8O09hZoB03oA2gIR0CpWKQkPczqdX2UKGgGR0CdTnADJU5uaAdN6ANoCEdAqVqSG8EmpnV9lChoBkdAnByfTb349GgHTegDaAhHQKlkLk7wKBx1fZQoaAZHQJ2k39m6GxloB03oA2gIR0CpZMzU7Sy/dX2UKGgGR0CWL+zxgAp8aAdN6ANoCEdAqWaYu27Wd3V9lChoBkdAmX7Q2uPmxWgHTegDaAhHQKlolYnOSnt1fZQoaAZHQI2pInrpqypoB03oA2gIR0CpcJzEit7sdX2UKGgGR0CU95Mm4RVZaAdN6ANoCEdAqXE7k0aZQnV9lChoBkdAlcHrJGOMl2gHTegDaAhHQKlzBYp2ECh1fZQoaAZHQJViCHCXQdFoB03oA2gIR0CpdRaBAfMfdX2UKGgGR0CFcJgsK9f1aAdN6ANoCEdAqX77lzU7S3V9lChoBkdAnM1ojrzGxWgHTegDaAhHQKl/l/hl18t1fZQoaAZHQJ9bXI3irDJoB03oA2gIR0CpgVQxN7BwdX2UKGgGR0CIjx8BuGbkaAdN6ANoCEdAqYNM83dbgXV9lChoBkdAn7PiBoVVP2gHTegDaAhHQKmLQW0JF9d1fZQoaAZHQJZ+xqEeyRloB03oA2gIR0Cpi+Jng5zYdX2UKGgGR0CMeB22Xsw+aAdN6ANoCEdAqY2uys0YTHV9lChoBkdAm2pRKL8762gHTegDaAhHQKmQNRMN+b51fZQoaAZHQJzkkbOu7pVoB03oA2gIR0CpmWyOq//OdX2UKGgGR0CX1KDhtLteaAdN6ANoCEdAqZoKYJE6UHV9lChoBkdAmdco+0PYnWgHTegDaAhHQKmb0k6cRUZ1fZQoaAZHQIAmm51/2CdoB03oA2gIR0CpndurZJ05dX2UKGgGR0CXUDm9QGfPaAdN6ANoCEdAqaXsmplz2nV9lChoBkdAnKuXktEofGgHTegDaAhHQKmmiwjdHlR1fZQoaAZHQH8uDDTBqKxoB03oA2gIR0CpqIoXsPatdX2UKGgGR0Cee6LFGXolaAdN6ANoCEdAqauQdp7CznV9lChoBkdAhJ0qEvkBCGgHTegDaAhHQKm0awBYFJR1fZQoaAZHQImWRSeiBXloB03oA2gIR0CptQ2rOqvNdX2UKGgGR0CVWJFGoaUBaAdN6ANoCEdAqbbV/YraunV9lChoBkdAf4kkwvg3tWgHTegDaAhHQKm44OxSpBJ1fZQoaAZHQJe36aiKziVoB03oA2gIR0CpwMNcv/R3dX2UKGgGR0CWyln1WbPQaAdN6ANoCEdAqcFtZmqYJHV9lChoBkdAmGCm1IAfdWgHTegDaAhHQKnEBRkVerx1fZQoaAZHQJcrbgOz6adoB03oA2gIR0CpxuziCJ40dX2UKGgGR0CAshz4DcM3aAdNvgFoCEdAqcgLpA2Q4nV9lChoBkdAhfTRQSBbwGgHTTsCaAhHQKnL7paiblR1fZQoaAZHQHmrUCzTnaFoB03oA2gIR0Cpz4P99+gEdX2UKGgGR0B8p/NgSeyzaAdN6ANoCEdAqdNTgydnTXV9lChoBkdAkV5OkcjqwGgHTegDaAhHQKnUdX8wYch1fZQoaAZHQHiBm38XN1RoB00rAWgIR0Cp2DbZvkzXdX2UKGgGR0CAxdzz3AVPaAdN6ANoCEdAqdhylFc6eXV9lChoBkdAmpMC79Q40mgHTegDaAhHQKncqdhAnlZ1fZQoaAZHQIA30aya/h5oB03oA2gIR0Cp4ataY/mldX2UKGgGR0CSp4BhQWN4aAdN6ANoCEdAqeaGBJ7LMnV9lChoBkdAhTU6GQCCBmgHTegDaAhHQKnmwmG/N7l1fZQoaAZHQJI9WE12q1hoB03oA2gIR0Cp6lRUm2LHdX2UKGgGR0CRB3va11GLaAdN6ANoCEdAqe45oEjgRHV9lChoBkdAjQY3fyf+TGgHTegDaAhHQKnzEdoWYWt1fZQoaAZHQHMySS7oSthoB03oA2gIR0Cp80wID5j6dX2UKGgGR0CWB0ogmqo7aAdN6ANoCEdAqfgXRTjvNXV9lChoBkdAluAS8zyjHmgHTegDaAhHQKn8MlWwNb11fZQoaAZHQJw8akFfReFoB03oA2gIR0CqAPy619fDdX2UKGgGR0B20yPfbblBaAdN6ANoCEdAqgE7adtl7XV9lChoBkdAm19ehwl0HWgHTegDaAhHQKoEtYUWVNZ1fZQoaAZHQH5fuKsMiKRoB03oA2gIR0CqCG1c2R7rdX2UKGgGR0CbM+y/9Hc2aAdN6ANoCEdAqg1FQO4G2XV9lChoBkdAnybvKyOaOWgHTegDaAhHQKoNoS+QEIR1fZQoaAZHQJIF7P3SKFZoB03oA2gIR0CqEtaBiCrcdX2UKGgGR0B/e8mBvrGBaAdN6ANoCEdAqhavAEdNnHV9lChoBkfAKXWjfvWpZWgHTTQBaAhHQKoWsxvegth1fZQoaAZHQJy5p00WM0hoB03oA2gIR0CqG31Muez2dX2UKGgGR0CZu/IS13MZaAdN6ANoCEdAqhu3oicG1XV9lChoBkdAl+/lLnLaEmgHTegDaAhHQKojIXKr7wd1fZQoaAZHQHlwjSPU8V5oB03oA2gIR0CqIycKXv6TdX2UKGgGR0B7Eo55qubJaAdN6ANoCEdAqii6s6q82HV9lChoBkdAkpOMWO6un2gHTegDaAhHQKopFqVQhwF1fZQoaAZHQH83g2l2vB9oB03oA2gIR0CqMWGFi8WcdX2UKGgGR0CdMu3Roh6jaAdN6ANoCEdAqjFlb/wRXnV9lChoBkdAkwF/z4DcM2gHTegDaAhHQKo2Hgdfb9J1fZQoaAZHQI0x/5P/JeVoB03oA2gIR0CqNlw1R+BpdX2UKGgGR0CSYVsySFGoaAdN6ANoCEdAqj29AX2ugnV9lChoBkdAgBAndXT3I2gHTegDaAhHQKo9wIO6NER1fZQoaAZHQIbBMkSmIj5oB03oA2gIR0CqQ/VivxH5dX2UKGgGR0CG67KvmozfaAdN6ANoCEdAqkRWR1X/53V9lChoBkdAPRVzMibDuWgHTTwBaAhHQKpIlUWl/H51fZQoaAZHQIHL6KHfuTloB03oA2gIR0CqS/SVv/BFdX2UKGgGR0CAd5gAp8WsaAdN6ANoCEdAqkv4XqJMx3V9lChoBkdAmriWMju8b2gHTegDaAhHQKpQxikwevJ1fZQoaAZHQJCMU7wKBupoB03oA2gIR0CqVN8HfMwDdX2UKGgGR0CcqzEgntv5aAdN6ANoCEdAqlg83uNPxnV9lChoBkdAff8Y/FBIF2gHTegDaAhHQKpYQdZq20B1fZQoaAZHQJ21UhdMTOBoB03oA2gIR0CqXs+bVjI8dX2UKGgGR0CAU2v38GcGaAdN6ANoCEdAqmMgcebNKXV9lChoBkdAl8QCsGPgemgHTegDaAhHQKpmncX3xnZ1fZQoaAZHQIuEqrR0EHNoB03oA2gIR0CqZqIdU83ddX2UKGgGR0CGg67pV0cPaAdN6ANoCEdAqmt88s+V1XV9lChoBkdAmhE4pUgjhWgHTegDaAhHQKpvn1wHZ9N1fZQoaAZHQJ3ImlSCOFRoB03oA2gIR0Cqc0fgaWHDdX2UKGgGR0CZ+Xhpxm03aAdN6ANoCEdAqnNNtQ9A5nV9lChoBkdAgNfIsAeaKGgHTegDaAhHQKp5mxzq8lJ1fZQoaAZHQJt1dWn0kGBoB03oA2gIR0CqfajyOJcgdX2UKGgGR0Cb3OTfBN21aAdN6ANoCEdAqoETcAR02nV9lChoBkdAnYhjgdfb9WgHTegDaAhHQKqBF52Qnx91fZQoaAZHQJ6/arIYFaBoB03oA2gIR0CqhdozFdcCdX2UKGgGR0CelRzND+iraAdN6ANoCEdAqonnvphWo3V9lChoBkdAnwwtsi0OVmgHTegDaAhHQKqOBElVtGd1fZQoaAZHQJ8fIPjGT9toB03oA2gIR0CqjgoUzsQedX2UKGgGR0CgoEKgyuZDaAdN6ANoCEdAqpPfkcS5AnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}