Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +10 -10
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- a2c-PandaReachDense-v2/system_info.txt +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -6.74 +/- 2.51
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b30be3255d0a49f74470296ea026e3f224e15825d2739d56013218f16af9f6d0
|
3 |
+
size 108073
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -24,7 +24,7 @@
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,10 +33,10 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[ 0.
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[ 0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[-0.
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,7 +56,7 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cfc634b7a30>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7cfc634ba180>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1690578111201525552,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA4jzmPtrfF70/OAU/4jzmPtrfF70/OAU/4jzmPtrfF70/OAU/4jzmPtrfF70/OAU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJrn4Pqbevj/5dro/BwpZv3MdBb/lqQS/1VSWP53ODD+vGo4/fDQ1vgAdqz5L6Wi+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADiPOY+2t8XvT84BT/S7Z66db9uuvqV+TviPOY+2t8XvT84BT/S7Z66db9uuvqV+TviPOY+2t8XvT84BT/S7Z66db9uuvqV+TviPOY+2t8XvT84BT/S7Z66db9uuvqV+TuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.44968325 -0.03707872 0.5203895 ]\n [ 0.44968325 -0.03707872 0.5203895 ]\n [ 0.44968325 -0.03707872 0.5203895 ]\n [ 0.44968325 -0.03707872 0.5203895 ]]",
|
38 |
+
"desired_goal": "[[ 0.48578757 1.4911697 1.4567558 ]\n [-0.84780926 -0.5199806 -0.5182174 ]\n [ 1.1744639 0.55002767 1.1101893 ]\n [-0.17695802 0.33420563 -0.22745244]]",
|
39 |
+
"observation": "[[ 0.44968325 -0.03707872 0.5203895 -0.00121253 -0.00091075 0.00761676]\n [ 0.44968325 -0.03707872 0.5203895 -0.00121253 -0.00091075 0.00761676]\n [ 0.44968325 -0.03707872 0.5203895 -0.00121253 -0.00091075 0.00761676]\n [ 0.44968325 -0.03707872 0.5203895 -0.00121253 -0.00091075 0.00761676]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApYvtvdUOcb1CH/c84StPPervvD0kbYA9PSHUvGLU8b0A7pA+xC3IPa3ThT3xh/w9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.11598901 -0.05885204 0.03016627]\n [ 0.05057896 0.09225447 0.06270817]\n [-0.02589476 -0.11808087 0.2830658 ]\n [ 0.09774354 0.06534515 0.12330616]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJzPeVnqdEMCUhpRSlIwBbJRLMowBdJRHQKY8HRpDeCV1fZQoaAZoCWgPQwgkfzDw3AsjwJSGlFKUaBVLMmgWR0CmO4iOmzjWdX2UKGgGaAloD0MIAruaPGWFEMCUhpRSlGgVSzJoFkdApjtHG0eEI3V9lChoBmgJaA9DCIHQevgy4RLAlIaUUpRoFUsyaBZHQKY7Bh86V+t1fZQoaAZoCWgPQwjdKLLWUDIqwJSGlFKUaBVLMmgWR0CmPTb9qDbrdX2UKGgGaAloD0MI+wRQjCxZEMCUhpRSlGgVSzJoFkdApjyiz7di2HV9lChoBmgJaA9DCAqeQq7UoxfAlIaUUpRoFUsyaBZHQKY8YXLNfPZ1fZQoaAZoCWgPQwi1p+Sc2IMFwJSGlFKUaBVLMmgWR0CmPCFGoaUBdX2UKGgGaAloD0MIKGTnbWz2HsCUhpRSlGgVSzJoFkdApj5faakRBnV9lChoBmgJaA9DCDIepRKeqCLAlIaUUpRoFUsyaBZHQKY9yyyD7Il1fZQoaAZoCWgPQwjEXFK13WQewJSGlFKUaBVLMmgWR0CmPYoH9m6HdX2UKGgGaAloD0MIwHXFjPAWI8CUhpRSlGgVSzJoFkdApj1KEDhcaHV9lChoBmgJaA9DCNegL7392QTAlIaUUpRoFUsyaBZHQKY/TweeWfN1fZQoaAZoCWgPQwj3rGu0HGgSwJSGlFKUaBVLMmgWR0CmPrqDCgscdX2UKGgGaAloD0MIYCAIkKEDH8CUhpRSlGgVSzJoFkdApj55KJ2t+3V9lChoBmgJaA9DCNWVz/I8GBrAlIaUUpRoFUsyaBZHQKY+OAOJ+Dx1fZQoaAZoCWgPQwhAE2HD0/scwJSGlFKUaBVLMmgWR0CmQGps41gqdX2UKGgGaAloD0MIFsCUgQMaIsCUhpRSlGgVSzJoFkdApj/V69kBjnV9lChoBmgJaA9DCNrIdVPKqwTAlIaUUpRoFUsyaBZHQKY/lIpYs/Z1fZQoaAZoCWgPQwj5MHvZdpoTwJSGlFKUaBVLMmgWR0CmP1N03fhudX2UKGgGaAloD0MIUMb4MHuhIcCUhpRSlGgVSzJoFkdApkF8VrRBvHV9lChoBmgJaA9DCJnxttJreyTAlIaUUpRoFUsyaBZHQKZA58sMAm11fZQoaAZoCWgPQwhhxhSscZYNwJSGlFKUaBVLMmgWR0CmQKZS3soldX2UKGgGaAloD0MIPEz75v7aEcCUhpRSlGgVSzJoFkdApkBlhLGrCHV9lChoBmgJaA9DCEXURJ+PsgjAlIaUUpRoFUsyaBZHQKZCWs9SuQp1fZQoaAZoCWgPQwjx12SNeigAwJSGlFKUaBVLMmgWR0CmQcZaV2RrdX2UKGgGaAloD0MI8Z2Y9WLwJMCUhpRSlGgVSzJoFkdApkGE6YE4enV9lChoBmgJaA9DCN45lKEqhh7AlIaUUpRoFUsyaBZHQKZBRBSDRMN1fZQoaAZoCWgPQwjqCUs8oMwMwJSGlFKUaBVLMmgWR0CmQ26naWX1dX2UKGgGaAloD0MISMFTyJUiIsCUhpRSlGgVSzJoFkdApkLaKYRdyHV9lChoBmgJaA9DCCf5Eb9izQjAlIaUUpRoFUsyaBZHQKZCmMqjJuF1fZQoaAZoCWgPQwj2QCswZFUewJSGlFKUaBVLMmgWR0CmQllCb+cZdX2UKGgGaAloD0MI8NqlDYc1F8CUhpRSlGgVSzJoFkdApkRsvM8oyHV9lChoBmgJaA9DCMIv9fOmAgrAlIaUUpRoFUsyaBZHQKZD2DeTFER1fZQoaAZoCWgPQwgp6sw9JFwiwJSGlFKUaBVLMmgWR0CmQ5a/IsAedX2UKGgGaAloD0MIHqhTHt3YIsCUhpRSlGgVSzJoFkdApkNVhoduHnV9lChoBmgJaA9DCL3jFB3JlRDAlIaUUpRoFUsyaBZHQKZFfK5Cngp1fZQoaAZoCWgPQwjlDMUdb+ogwJSGlFKUaBVLMmgWR0CmROjB/I8ydX2UKGgGaAloD0MIGavN/6uuDMCUhpRSlGgVSzJoFkdApkSnO0LMLXV9lChoBmgJaA9DCOs1PSgolRHAlIaUUpRoFUsyaBZHQKZEZot+TeR1fZQoaAZoCWgPQwgIBhA+lIgIwJSGlFKUaBVLMmgWR0CmRnIfjjrBdX2UKGgGaAloD0MIEd+JWS/2GMCUhpRSlGgVSzJoFkdApkXdyHVPN3V9lChoBmgJaA9DCMMuih74GBHAlIaUUpRoFUsyaBZHQKZFnHtnf2t1fZQoaAZoCWgPQwjtYS8UsB0NwJSGlFKUaBVLMmgWR0CmRVtPP9k0dX2UKGgGaAloD0MIJvxSP2/aFMCUhpRSlGgVSzJoFkdApkdoWac7Q3V9lChoBmgJaA9DCHuIRncQWybAlIaUUpRoFUsyaBZHQKZG1Motthx1fZQoaAZoCWgPQwg6H54lyHAgwJSGlFKUaBVLMmgWR0CmRpPNNahYdX2UKGgGaAloD0MIVBuciH5NB8CUhpRSlGgVSzJoFkdApkZTIV/MGHV9lChoBmgJaA9DCEj5SbVPBx/AlIaUUpRoFUsyaBZHQKZIShnrY5F1fZQoaAZoCWgPQwjsaYe/JnsawJSGlFKUaBVLMmgWR0CmR7WfTTfBdX2UKGgGaAloD0MIfhr35je8EMCUhpRSlGgVSzJoFkdApkd0KgIyCXV9lChoBmgJaA9DCELqdvaVrybAlIaUUpRoFUsyaBZHQKZHMxKQJX11fZQoaAZoCWgPQwiRmnYxzfQYwJSGlFKUaBVLMmgWR0CmSUMWoFV1dX2UKGgGaAloD0MIStHKvcDMCMCUhpRSlGgVSzJoFkdApkiurU9ZBHV9lChoBmgJaA9DCN9RY0LMJRDAlIaUUpRoFUsyaBZHQKZIbS2H+Id1fZQoaAZoCWgPQwjDgvsBDywRwJSGlFKUaBVLMmgWR0CmSCwSi/O/dX2UKGgGaAloD0MIRL5LqUuGE8CUhpRSlGgVSzJoFkdApkooFxGUfXV9lChoBmgJaA9DCIp3gCctPALAlIaUUpRoFUsyaBZHQKZJk5GSZBt1fZQoaAZoCWgPQwim7souGAwVwJSGlFKUaBVLMmgWR0CmSVIX9BKMdX2UKGgGaAloD0MI/wdYq3ZtFsCUhpRSlGgVSzJoFkdApkkRLK3d9HV9lChoBmgJaA9DCDcclgZ+1AvAlIaUUpRoFUsyaBZHQKZLGqABkqd1fZQoaAZoCWgPQwiRfCWQEjsRwJSGlFKUaBVLMmgWR0CmSoYU34sVdX2UKGgGaAloD0MI3lhQGJQZG8CUhpRSlGgVSzJoFkdApkpElme18nV9lChoBmgJaA9DCCCXOPJApArAlIaUUpRoFUsyaBZHQKZKA4DLbHp1fZQoaAZoCWgPQwj2YFJ8fAIGwJSGlFKUaBVLMmgWR0CmTBDJdSl4dX2UKGgGaAloD0MIrimQ2VmkG8CUhpRSlGgVSzJoFkdApkt8SwnpjnV9lChoBmgJaA9DCBA9KZMaihPAlIaUUpRoFUsyaBZHQKZLOuFpPAR1fZQoaAZoCWgPQwijIk4n2doUwJSGlFKUaBVLMmgWR0CmSvoBRyfddX2UKGgGaAloD0MIk3NiD+3DEsCUhpRSlGgVSzJoFkdApk02eHzpYHV9lChoBmgJaA9DCOfkRSbgVxnAlIaUUpRoFUsyaBZHQKZMopeeFtd1fZQoaAZoCWgPQwgWaHdIMeAGwJSGlFKUaBVLMmgWR0CmTGHG8274dX2UKGgGaAloD0MIjC/a44XEGcCUhpRSlGgVSzJoFkdApkwhTIeYD3V9lChoBmgJaA9DCOXS+IVXqiXAlIaUUpRoFUsyaBZHQKZOyNKh+OR1fZQoaAZoCWgPQwhzDwnf+0sXwJSGlFKUaBVLMmgWR0CmTjTguRLcdX2UKGgGaAloD0MIc4HLY80oG8CUhpRSlGgVSzJoFkdApk30aOxSpHV9lChoBmgJaA9DCJ3YQ/tYYR7AlIaUUpRoFUsyaBZHQKZNs9FF2FF1fZQoaAZoCWgPQwjNAYI5enwWwJSGlFKUaBVLMmgWR0CmUIgCGN70dX2UKGgGaAloD0MI2AsFbAfTFsCUhpRSlGgVSzJoFkdApk/14u9OAXV9lChoBmgJaA9DCJz6QPLOIR/AlIaUUpRoFUsyaBZHQKZPtYdyT6l1fZQoaAZoCWgPQwjkFYielMkKwJSGlFKUaBVLMmgWR0CmT3UHIIWydX2UKGgGaAloD0MIDD84nzoGF8CUhpRSlGgVSzJoFkdAplIrIDHOr3V9lChoBmgJaA9DCO6UDtb/aRDAlIaUUpRoFUsyaBZHQKZRlz9S/CZ1fZQoaAZoCWgPQwj8HYoCfWISwJSGlFKUaBVLMmgWR0CmUVaVt4zKdX2UKGgGaAloD0MI8Z2Y9WLID8CUhpRSlGgVSzJoFkdAplEXJPqLTHV9lChoBmgJaA9DCAVvSKMC5yDAlIaUUpRoFUsyaBZHQKZT+tSQ5m11fZQoaAZoCWgPQwjYRjzZzbwRwJSGlFKUaBVLMmgWR0CmU2cQqZtvdX2UKGgGaAloD0MIXTEjvD0oIsCUhpRSlGgVSzJoFkdAplMmQKa5PXV9lChoBmgJaA9DCPjCZKpgtBLAlIaUUpRoFUsyaBZHQKZS5mDDjzZ1fZQoaAZoCWgPQwhjl6jeGvAgwJSGlFKUaBVLMmgWR0CmVT2X1J18dX2UKGgGaAloD0MIq65DNSWZFMCUhpRSlGgVSzJoFkdAplSqDkELY3V9lChoBmgJaA9DCPNXyFwZFBfAlIaUUpRoFUsyaBZHQKZUaI2wV0t1fZQoaAZoCWgPQwiOWItPAVggwJSGlFKUaBVLMmgWR0CmVCdbX6IndX2UKGgGaAloD0MI5zQLtDu0JcCUhpRSlGgVSzJoFkdAplYqz7di2HV9lChoBmgJaA9DCFg89UiDuyHAlIaUUpRoFUsyaBZHQKZVlj1f3N91fZQoaAZoCWgPQwgNN+Dzw7gWwJSGlFKUaBVLMmgWR0CmVVTGgi/xdX2UKGgGaAloD0MISgwCK4f2IsCUhpRSlGgVSzJoFkdAplUTwz+FUXV9lChoBmgJaA9DCPJ8BtSbWSHAlIaUUpRoFUsyaBZHQKZXQ8L8aXN1fZQoaAZoCWgPQwh4Y0FhULYewJSGlFKUaBVLMmgWR0CmVrAlnh86dX2UKGgGaAloD0MIRpT2Bl9QJcCUhpRSlGgVSzJoFkdAplZvTmW+oXV9lChoBmgJaA9DCIMWEjC6XB3AlIaUUpRoFUsyaBZHQKZWL2VVxS51ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad5bd2a5534b8408e9a8eea95998d1031ac471157af50c41fe4b8e1123b57bfb
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4891f0341eab6332fed5597e21be4aefe9deec095af2a0b461edf26b5d0d9f87
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -2,6 +2,6 @@
|
|
2 |
- Python: 3.10.6
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
- PyTorch: 2.0.1+cu118
|
5 |
-
- GPU Enabled:
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
|
|
2 |
- Python: 3.10.6
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cef1b0483a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cef1b037800>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690492893933801643, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2nbQPhU4Irx3Uws/2nbQPhU4Irx3Uws/2nbQPhU4Irx3Uws/2nbQPhU4Irx3Uws/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEW6uv9n7o79fGJQ+Loipv8YTyD/a60i/XyLRv/GQ1L9k3NY/XgyIP/tuQj8G/16+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADadtA+FTgivHdTCz92/SC8UyBcuoHf4bvadtA+FTgivHdTCz92/SC8UyBcuoHf4bvadtA+FTgivHdTCz92/SC8UyBcuoHf4bvadtA+FTgivHdTCz92/SC8UyBcuoHf4buUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40715677 -0.00990107 0.5442423 ]\n [ 0.40715677 -0.00990107 0.5442423 ]\n [ 0.40715677 -0.00990107 0.5442423 ]\n [ 0.40715677 -0.00990107 0.5442423 ]]", "desired_goal": "[[-1.362734 -1.2811233 0.28924844]\n [-1.3244684 1.5631034 -0.7848488 ]\n [-1.6338614 -1.6606733 1.6786008 ]\n [ 1.0628774 0.7595059 -0.21776971]]", "observation": "[[ 0.40715677 -0.00990107 0.5442423 -0.00982605 -0.00083972 -0.0068931 ]\n [ 0.40715677 -0.00990107 0.5442423 -0.00982605 -0.00083972 -0.0068931 ]\n [ 0.40715677 -0.00990107 0.5442423 -0.00982605 -0.00083972 -0.0068931 ]\n [ 0.40715677 -0.00990107 0.5442423 -0.00982605 -0.00083972 -0.0068931 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAn3f6vbCTXT3WSKU9dJrhPYshFz4Q7z49kAjNPKDZoD3i6iQ+E6+SvYL+Ub2s9YM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.12229847 0.05409592 0.08070533]\n [ 0.11015788 0.1475889 0.04661471]\n [ 0.0250285 0.07854009 0.16105226]\n [-0.07162299 -0.05126811 0.2577337 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjiPW4lMABcCUhpRSlIwBbJRLMowBdJRHQJ/a9Net0V91fZQoaAZoCWgPQwha1Ce5w6YOwJSGlFKUaBVLMmgWR0Cf2nv8qFyrdX2UKGgGaAloD0MI1/Z2S3IAEsCUhpRSlGgVSzJoFkdAn9m+afBeonV9lChoBmgJaA9DCPILryR53hjAlIaUUpRoFUsyaBZHQJ/ZAv24/eN1fZQoaAZoCWgPQwgMO4xJf+8QwJSGlFKUaBVLMmgWR0Cf3JWQfZEldX2UKGgGaAloD0MIR1m/mZiu7L+UhpRSlGgVSzJoFkdAn9wbG3nZCnV9lChoBmgJaA9DCHy6umOxDfW/lIaUUpRoFUsyaBZHQJ/bXPiT+vR1fZQoaAZoCWgPQwjlmZfD7tsNwJSGlFKUaBVLMmgWR0Cf2qF85S3tdX2UKGgGaAloD0MIFJSilXvB9b+UhpRSlGgVSzJoFkdAn95SF9KEnXV9lChoBmgJaA9DCKpJ8IY06vq/lIaUUpRoFUsyaBZHQJ/d18neBQN1fZQoaAZoCWgPQwgMlX8tr5wHwJSGlFKUaBVLMmgWR0Cf3Rpm29csdX2UKGgGaAloD0MIPZrqyfwzE8CUhpRSlGgVSzJoFkdAn9xe76Hj63V9lChoBmgJaA9DCDs2AvG6vgrAlIaUUpRoFUsyaBZHQJ/f85WBBiV1fZQoaAZoCWgPQwjOwp52+GsDwJSGlFKUaBVLMmgWR0Cf33kiUxEfdX2UKGgGaAloD0MIBHRfzmxXC8CUhpRSlGgVSzJoFkdAn966+vhZQ3V9lChoBmgJaA9DCLUYPEz7hgLAlIaUUpRoFUsyaBZHQJ/d/0nPVut1fZQoaAZoCWgPQwipFhHF5O0FwJSGlFKUaBVLMmgWR0Cf4XimEXchdX2UKGgGaAloD0MIXr71Yb1xAsCUhpRSlGgVSzJoFkdAn+D9+kP+XXV9lChoBmgJaA9DCNgMcEG2DAjAlIaUUpRoFUsyaBZHQJ/gQEt/WlN1fZQoaAZoCWgPQwgzqDY4ET0KwJSGlFKUaBVLMmgWR0Cf34SjgydndX2UKGgGaAloD0MI6ui4Gtm1BMCUhpRSlGgVSzJoFkdAn+L1LWZqmHV9lChoBmgJaA9DCJ2+nq9ZrgjAlIaUUpRoFUsyaBZHQJ/ierIYFaB1fZQoaAZoCWgPQwh0sz9QblsMwJSGlFKUaBVLMmgWR0Cf4bxzJZGKdX2UKGgGaAloD0MIf2snSkKi/7+UhpRSlGgVSzJoFkdAn+EAyAQQMHV9lChoBmgJaA9DCDDzHfzEQQjAlIaUUpRoFUsyaBZHQJ/kker+5vt1fZQoaAZoCWgPQwgzqaENwAb+v5SGlFKUaBVLMmgWR0Cf5BdvsJIEdX2UKGgGaAloD0MIrG9gcqMI87+UhpRSlGgVSzJoFkdAn+NZbpu/DnV9lChoBmgJaA9DCCU+d4L9RxHAlIaUUpRoFUsyaBZHQJ/inh5xBE91fZQoaAZoCWgPQwj2RNeFHxz3v5SGlFKUaBVLMmgWR0Cf5huCf6GhdX2UKGgGaAloD0MIZd6q61ANAcCUhpRSlGgVSzJoFkdAn+Wg1zhgmnV9lChoBmgJaA9DCJqV7UPecvW/lIaUUpRoFUsyaBZHQJ/k4spXp4d1fZQoaAZoCWgPQwi2upwSEJP/v5SGlFKUaBVLMmgWR0Cf5CdNnGsFdX2UKGgGaAloD0MImN9pMuMtE8CUhpRSlGgVSzJoFkdAn+e61og3cnV9lChoBmgJaA9DCFFPH4E/XAfAlIaUUpRoFUsyaBZHQJ/nQHpr1ul1fZQoaAZoCWgPQwi21hcJbZkDwJSGlFKUaBVLMmgWR0Cf5oJvo/zKdX2UKGgGaAloD0MI4ScOoN8XAcCUhpRSlGgVSzJoFkdAn+XG0E5hjXV9lChoBmgJaA9DCPGBHf8FggnAlIaUUpRoFUsyaBZHQJ/pRZ8rqdJ1fZQoaAZoCWgPQwjp8uZwrVYGwJSGlFKUaBVLMmgWR0Cf6MsHB1s+dX2UKGgGaAloD0MIwi/186YiC8CUhpRSlGgVSzJoFkdAn+gMxTKkmHV9lChoBmgJaA9DCN/hdmhYDOe/lIaUUpRoFUsyaBZHQJ/nUaNuLrJ1fZQoaAZoCWgPQwhu2/eov973v5SGlFKUaBVLMmgWR0Cf6s+RoysTdX2UKGgGaAloD0MI0CaHTzrxFcCUhpRSlGgVSzJoFkdAn+pU+cH4XXV9lChoBmgJaA9DCOCFrdnKSwHAlIaUUpRoFUsyaBZHQJ/pluLrHEN1fZQoaAZoCWgPQwgD7KNTVz4KwJSGlFKUaBVLMmgWR0Cf6NtRekYXdX2UKGgGaAloD0MIs+xJYHNO/7+UhpRSlGgVSzJoFkdAn+xnMhX8wnV9lChoBmgJaA9DCDrNAu0OiQfAlIaUUpRoFUsyaBZHQJ/r7Ks+3Yt1fZQoaAZoCWgPQwg7/DVZox79v5SGlFKUaBVLMmgWR0Cf6y6GgzxgdX2UKGgGaAloD0MI5BJHHojsBsCUhpRSlGgVSzJoFkdAn+pyiItUXHV9lChoBmgJaA9DCBzO/GoOsAfAlIaUUpRoFUsyaBZHQJ/t8SBbwBp1fZQoaAZoCWgPQwgJ3pBGBc73v5SGlFKUaBVLMmgWR0Cf7XaAFxGUdX2UKGgGaAloD0MI7x8L0SHwAsCUhpRSlGgVSzJoFkdAn+y4Ui6g/XV9lChoBmgJaA9DCMecZ+xL9g3AlIaUUpRoFUsyaBZHQJ/r/JeVs1t1fZQoaAZoCWgPQwi3nEtxVRn5v5SGlFKUaBVLMmgWR0Cf724lhPTHdX2UKGgGaAloD0MIorWizXFOBcCUhpRSlGgVSzJoFkdAn+7zru6VdHV9lChoBmgJaA9DCJ7Swfo/h/m/lIaUUpRoFUsyaBZHQJ/uNXyRSxZ1fZQoaAZoCWgPQwgV4LvNG4cBwJSGlFKUaBVLMmgWR0Cf7Xn1FpfydX2UKGgGaAloD0MIL2zNVl6y/b+UhpRSlGgVSzJoFkdAn/DhI4EOiHV9lChoBmgJaA9DCKOwi6IHvg/AlIaUUpRoFUsyaBZHQJ/wZp5/smh1fZQoaAZoCWgPQwiv6xfshm37v5SGlFKUaBVLMmgWR0Cf76iIcinpdX2UKGgGaAloD0MIAtcVM8JbDsCUhpRSlGgVSzJoFkdAn+7s/QjUu3V9lChoBmgJaA9DCIveqYB7HgnAlIaUUpRoFUsyaBZHQJ/yc7Njbzt1fZQoaAZoCWgPQwiPjNXm/5UIwJSGlFKUaBVLMmgWR0Cf8fk0Jng6dX2UKGgGaAloD0MIjh6/t+lP+L+UhpRSlGgVSzJoFkdAn/E7CrLhaXV9lChoBmgJaA9DCIfhI2JKxArAlIaUUpRoFUsyaBZHQJ/wf2K2rn11fZQoaAZoCWgPQwjk2lAxzo8YwJSGlFKUaBVLMmgWR0Cf8+WluWKNdX2UKGgGaAloD0MIx0eLM4Z5/r+UhpRSlGgVSzJoFkdAn/NqvV3EAHV9lChoBmgJaA9DCEm5+xwfbf+/lIaUUpRoFUsyaBZHQJ/yrG+9Jz11fZQoaAZoCWgPQwgYd4NoregFwJSGlFKUaBVLMmgWR0Cf8fCg9NeudX2UKGgGaAloD0MIhbAaS1j7DMCUhpRSlGgVSzJoFkdAn/U36InBtXV9lChoBmgJaA9DCEi/fR04hw/AlIaUUpRoFUsyaBZHQJ/0vaxoqTd1fZQoaAZoCWgPQwgurvGZ7A8WwJSGlFKUaBVLMmgWR0Cf8/+MqBmPdX2UKGgGaAloD0MI/G1PkNiOCcCUhpRSlGgVSzJoFkdAn/NDq0MPSXV9lChoBmgJaA9DCKXAApgyEAzAlIaUUpRoFUsyaBZHQJ/2qLzf7791fZQoaAZoCWgPQwjboswGmWQVwJSGlFKUaBVLMmgWR0Cf9i3nIQvpdX2UKGgGaAloD0MIq5Se6SUGBMCUhpRSlGgVSzJoFkdAn/VvZmI0qHV9lChoBmgJaA9DCBnL9EvEWwXAlIaUUpRoFUsyaBZHQJ/0s5DJEIB1fZQoaAZoCWgPQwh3oiQk0hYGwJSGlFKUaBVLMmgWR0Cf+HnscABDdX2UKGgGaAloD0MIHw4SonzBFcCUhpRSlGgVSzJoFkdAn/f/0qYqonV9lChoBmgJaA9DCJQT7SqkXAPAlIaUUpRoFUsyaBZHQJ/3Qm1IAfd1fZQoaAZoCWgPQwjoFroSgYoNwJSGlFKUaBVLMmgWR0Cf9odyT6i1dX2UKGgGaAloD0MIfdCzWfVZCsCUhpRSlGgVSzJoFkdAn/qG3Sa3JHV9lChoBmgJaA9DCDuJCP8iSAXAlIaUUpRoFUsyaBZHQJ/6DMTviLl1fZQoaAZoCWgPQwhCe/Xx0BcBwJSGlFKUaBVLMmgWR0Cf+U9FnZkDdX2UKGgGaAloD0MI2lNyTuwBDsCUhpRSlGgVSzJoFkdAn/iUCNjslnV9lChoBmgJaA9DCBl2GJP+PgDAlIaUUpRoFUsyaBZHQJ/8kNPP9k11fZQoaAZoCWgPQwi3Qe23dkIIwJSGlFKUaBVLMmgWR0Cf/BbG3nZCdX2UKGgGaAloD0MI5usy/Ke7CMCUhpRSlGgVSzJoFkdAn/tY/7iyZHV9lChoBmgJaA9DCICAtWrXRAnAlIaUUpRoFUsyaBZHQJ/6nasZHd51fZQoaAZoCWgPQwi/9PbnomH6v5SGlFKUaBVLMmgWR0Cf/w/yXlbNdX2UKGgGaAloD0MIylLr/UYrE8CUhpRSlGgVSzJoFkdAn/6XRoh6jXV9lChoBmgJaA9DCEVJSKRtHArAlIaUUpRoFUsyaBZHQJ/92m65Gz91fZQoaAZoCWgPQwghk4ychb0PwJSGlFKUaBVLMmgWR0Cf/SCRwIdEdX2UKGgGaAloD0MILSeh9IVQE8CUhpRSlGgVSzJoFkdAoADG9g4OtnV9lChoBmgJaA9DCLvSMlLvafi/lIaUUpRoFUsyaBZHQKAAimNzbN91fZQoaAZoCWgPQwhS76mc9hT2v5SGlFKUaBVLMmgWR0CgACv/7zkIdX2UKGgGaAloD0MI0lW6u86G/L+UhpRSlGgVSzJoFkdAn/+dkvsZ53V9lChoBmgJaA9DCCR7hJohVQPAlIaUUpRoFUsyaBZHQKABjddmg8N1fZQoaAZoCWgPQwgpeXWOARkDwJSGlFKUaBVLMmgWR0CgAVBn8KoidX2UKGgGaAloD0MIMGR1q+fEAcCUhpRSlGgVSzJoFkdAoADxMzuWr3V9lChoBmgJaA9DCJCGU+bmewDAlIaUUpRoFUsyaBZHQKAAk0uUUwl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cfc634b7a30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cfc634ba180>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690578111201525552, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA4jzmPtrfF70/OAU/4jzmPtrfF70/OAU/4jzmPtrfF70/OAU/4jzmPtrfF70/OAU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJrn4Pqbevj/5dro/BwpZv3MdBb/lqQS/1VSWP53ODD+vGo4/fDQ1vgAdqz5L6Wi+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADiPOY+2t8XvT84BT/S7Z66db9uuvqV+TviPOY+2t8XvT84BT/S7Z66db9uuvqV+TviPOY+2t8XvT84BT/S7Z66db9uuvqV+TviPOY+2t8XvT84BT/S7Z66db9uuvqV+TuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.44968325 -0.03707872 0.5203895 ]\n [ 0.44968325 -0.03707872 0.5203895 ]\n [ 0.44968325 -0.03707872 0.5203895 ]\n [ 0.44968325 -0.03707872 0.5203895 ]]", "desired_goal": "[[ 0.48578757 1.4911697 1.4567558 ]\n [-0.84780926 -0.5199806 -0.5182174 ]\n [ 1.1744639 0.55002767 1.1101893 ]\n [-0.17695802 0.33420563 -0.22745244]]", "observation": "[[ 0.44968325 -0.03707872 0.5203895 -0.00121253 -0.00091075 0.00761676]\n [ 0.44968325 -0.03707872 0.5203895 -0.00121253 -0.00091075 0.00761676]\n [ 0.44968325 -0.03707872 0.5203895 -0.00121253 -0.00091075 0.00761676]\n [ 0.44968325 -0.03707872 0.5203895 -0.00121253 -0.00091075 0.00761676]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApYvtvdUOcb1CH/c84StPPervvD0kbYA9PSHUvGLU8b0A7pA+xC3IPa3ThT3xh/w9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11598901 -0.05885204 0.03016627]\n [ 0.05057896 0.09225447 0.06270817]\n [-0.02589476 -0.11808087 0.2830658 ]\n [ 0.09774354 0.06534515 0.12330616]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJzPeVnqdEMCUhpRSlIwBbJRLMowBdJRHQKY8HRpDeCV1fZQoaAZoCWgPQwgkfzDw3AsjwJSGlFKUaBVLMmgWR0CmO4iOmzjWdX2UKGgGaAloD0MIAruaPGWFEMCUhpRSlGgVSzJoFkdApjtHG0eEI3V9lChoBmgJaA9DCIHQevgy4RLAlIaUUpRoFUsyaBZHQKY7Bh86V+t1fZQoaAZoCWgPQwjdKLLWUDIqwJSGlFKUaBVLMmgWR0CmPTb9qDbrdX2UKGgGaAloD0MI+wRQjCxZEMCUhpRSlGgVSzJoFkdApjyiz7di2HV9lChoBmgJaA9DCAqeQq7UoxfAlIaUUpRoFUsyaBZHQKY8YXLNfPZ1fZQoaAZoCWgPQwi1p+Sc2IMFwJSGlFKUaBVLMmgWR0CmPCFGoaUBdX2UKGgGaAloD0MIKGTnbWz2HsCUhpRSlGgVSzJoFkdApj5faakRBnV9lChoBmgJaA9DCDIepRKeqCLAlIaUUpRoFUsyaBZHQKY9yyyD7Il1fZQoaAZoCWgPQwjEXFK13WQewJSGlFKUaBVLMmgWR0CmPYoH9m6HdX2UKGgGaAloD0MIwHXFjPAWI8CUhpRSlGgVSzJoFkdApj1KEDhcaHV9lChoBmgJaA9DCNegL7392QTAlIaUUpRoFUsyaBZHQKY/TweeWfN1fZQoaAZoCWgPQwj3rGu0HGgSwJSGlFKUaBVLMmgWR0CmPrqDCgscdX2UKGgGaAloD0MIYCAIkKEDH8CUhpRSlGgVSzJoFkdApj55KJ2t+3V9lChoBmgJaA9DCNWVz/I8GBrAlIaUUpRoFUsyaBZHQKY+OAOJ+Dx1fZQoaAZoCWgPQwhAE2HD0/scwJSGlFKUaBVLMmgWR0CmQGps41gqdX2UKGgGaAloD0MIFsCUgQMaIsCUhpRSlGgVSzJoFkdApj/V69kBjnV9lChoBmgJaA9DCNrIdVPKqwTAlIaUUpRoFUsyaBZHQKY/lIpYs/Z1fZQoaAZoCWgPQwj5MHvZdpoTwJSGlFKUaBVLMmgWR0CmP1N03fhudX2UKGgGaAloD0MIUMb4MHuhIcCUhpRSlGgVSzJoFkdApkF8VrRBvHV9lChoBmgJaA9DCJnxttJreyTAlIaUUpRoFUsyaBZHQKZA58sMAm11fZQoaAZoCWgPQwhhxhSscZYNwJSGlFKUaBVLMmgWR0CmQKZS3soldX2UKGgGaAloD0MIPEz75v7aEcCUhpRSlGgVSzJoFkdApkBlhLGrCHV9lChoBmgJaA9DCEXURJ+PsgjAlIaUUpRoFUsyaBZHQKZCWs9SuQp1fZQoaAZoCWgPQwjx12SNeigAwJSGlFKUaBVLMmgWR0CmQcZaV2RrdX2UKGgGaAloD0MI8Z2Y9WLwJMCUhpRSlGgVSzJoFkdApkGE6YE4enV9lChoBmgJaA9DCN45lKEqhh7AlIaUUpRoFUsyaBZHQKZBRBSDRMN1fZQoaAZoCWgPQwjqCUs8oMwMwJSGlFKUaBVLMmgWR0CmQ26naWX1dX2UKGgGaAloD0MISMFTyJUiIsCUhpRSlGgVSzJoFkdApkLaKYRdyHV9lChoBmgJaA9DCCf5Eb9izQjAlIaUUpRoFUsyaBZHQKZCmMqjJuF1fZQoaAZoCWgPQwj2QCswZFUewJSGlFKUaBVLMmgWR0CmQllCb+cZdX2UKGgGaAloD0MI8NqlDYc1F8CUhpRSlGgVSzJoFkdApkRsvM8oyHV9lChoBmgJaA9DCMIv9fOmAgrAlIaUUpRoFUsyaBZHQKZD2DeTFER1fZQoaAZoCWgPQwgp6sw9JFwiwJSGlFKUaBVLMmgWR0CmQ5a/IsAedX2UKGgGaAloD0MIHqhTHt3YIsCUhpRSlGgVSzJoFkdApkNVhoduHnV9lChoBmgJaA9DCL3jFB3JlRDAlIaUUpRoFUsyaBZHQKZFfK5Cngp1fZQoaAZoCWgPQwjlDMUdb+ogwJSGlFKUaBVLMmgWR0CmROjB/I8ydX2UKGgGaAloD0MIGavN/6uuDMCUhpRSlGgVSzJoFkdApkSnO0LMLXV9lChoBmgJaA9DCOs1PSgolRHAlIaUUpRoFUsyaBZHQKZEZot+TeR1fZQoaAZoCWgPQwgIBhA+lIgIwJSGlFKUaBVLMmgWR0CmRnIfjjrBdX2UKGgGaAloD0MIEd+JWS/2GMCUhpRSlGgVSzJoFkdApkXdyHVPN3V9lChoBmgJaA9DCMMuih74GBHAlIaUUpRoFUsyaBZHQKZFnHtnf2t1fZQoaAZoCWgPQwjtYS8UsB0NwJSGlFKUaBVLMmgWR0CmRVtPP9k0dX2UKGgGaAloD0MIJvxSP2/aFMCUhpRSlGgVSzJoFkdApkdoWac7Q3V9lChoBmgJaA9DCHuIRncQWybAlIaUUpRoFUsyaBZHQKZG1Motthx1fZQoaAZoCWgPQwg6H54lyHAgwJSGlFKUaBVLMmgWR0CmRpPNNahYdX2UKGgGaAloD0MIVBuciH5NB8CUhpRSlGgVSzJoFkdApkZTIV/MGHV9lChoBmgJaA9DCEj5SbVPBx/AlIaUUpRoFUsyaBZHQKZIShnrY5F1fZQoaAZoCWgPQwjsaYe/JnsawJSGlFKUaBVLMmgWR0CmR7WfTTfBdX2UKGgGaAloD0MIfhr35je8EMCUhpRSlGgVSzJoFkdApkd0KgIyCXV9lChoBmgJaA9DCELqdvaVrybAlIaUUpRoFUsyaBZHQKZHMxKQJX11fZQoaAZoCWgPQwiRmnYxzfQYwJSGlFKUaBVLMmgWR0CmSUMWoFV1dX2UKGgGaAloD0MIStHKvcDMCMCUhpRSlGgVSzJoFkdApkiurU9ZBHV9lChoBmgJaA9DCN9RY0LMJRDAlIaUUpRoFUsyaBZHQKZIbS2H+Id1fZQoaAZoCWgPQwjDgvsBDywRwJSGlFKUaBVLMmgWR0CmSCwSi/O/dX2UKGgGaAloD0MIRL5LqUuGE8CUhpRSlGgVSzJoFkdApkooFxGUfXV9lChoBmgJaA9DCIp3gCctPALAlIaUUpRoFUsyaBZHQKZJk5GSZBt1fZQoaAZoCWgPQwim7souGAwVwJSGlFKUaBVLMmgWR0CmSVIX9BKMdX2UKGgGaAloD0MI/wdYq3ZtFsCUhpRSlGgVSzJoFkdApkkRLK3d9HV9lChoBmgJaA9DCDcclgZ+1AvAlIaUUpRoFUsyaBZHQKZLGqABkqd1fZQoaAZoCWgPQwiRfCWQEjsRwJSGlFKUaBVLMmgWR0CmSoYU34sVdX2UKGgGaAloD0MI3lhQGJQZG8CUhpRSlGgVSzJoFkdApkpElme18nV9lChoBmgJaA9DCCCXOPJApArAlIaUUpRoFUsyaBZHQKZKA4DLbHp1fZQoaAZoCWgPQwj2YFJ8fAIGwJSGlFKUaBVLMmgWR0CmTBDJdSl4dX2UKGgGaAloD0MIrimQ2VmkG8CUhpRSlGgVSzJoFkdApkt8SwnpjnV9lChoBmgJaA9DCBA9KZMaihPAlIaUUpRoFUsyaBZHQKZLOuFpPAR1fZQoaAZoCWgPQwijIk4n2doUwJSGlFKUaBVLMmgWR0CmSvoBRyfddX2UKGgGaAloD0MIk3NiD+3DEsCUhpRSlGgVSzJoFkdApk02eHzpYHV9lChoBmgJaA9DCOfkRSbgVxnAlIaUUpRoFUsyaBZHQKZMopeeFtd1fZQoaAZoCWgPQwgWaHdIMeAGwJSGlFKUaBVLMmgWR0CmTGHG8274dX2UKGgGaAloD0MIjC/a44XEGcCUhpRSlGgVSzJoFkdApkwhTIeYD3V9lChoBmgJaA9DCOXS+IVXqiXAlIaUUpRoFUsyaBZHQKZOyNKh+OR1fZQoaAZoCWgPQwhzDwnf+0sXwJSGlFKUaBVLMmgWR0CmTjTguRLcdX2UKGgGaAloD0MIc4HLY80oG8CUhpRSlGgVSzJoFkdApk30aOxSpHV9lChoBmgJaA9DCJ3YQ/tYYR7AlIaUUpRoFUsyaBZHQKZNs9FF2FF1fZQoaAZoCWgPQwjNAYI5enwWwJSGlFKUaBVLMmgWR0CmUIgCGN70dX2UKGgGaAloD0MI2AsFbAfTFsCUhpRSlGgVSzJoFkdApk/14u9OAXV9lChoBmgJaA9DCJz6QPLOIR/AlIaUUpRoFUsyaBZHQKZPtYdyT6l1fZQoaAZoCWgPQwjkFYielMkKwJSGlFKUaBVLMmgWR0CmT3UHIIWydX2UKGgGaAloD0MIDD84nzoGF8CUhpRSlGgVSzJoFkdAplIrIDHOr3V9lChoBmgJaA9DCO6UDtb/aRDAlIaUUpRoFUsyaBZHQKZRlz9S/CZ1fZQoaAZoCWgPQwj8HYoCfWISwJSGlFKUaBVLMmgWR0CmUVaVt4zKdX2UKGgGaAloD0MI8Z2Y9WLID8CUhpRSlGgVSzJoFkdAplEXJPqLTHV9lChoBmgJaA9DCAVvSKMC5yDAlIaUUpRoFUsyaBZHQKZT+tSQ5m11fZQoaAZoCWgPQwjYRjzZzbwRwJSGlFKUaBVLMmgWR0CmU2cQqZtvdX2UKGgGaAloD0MIXTEjvD0oIsCUhpRSlGgVSzJoFkdAplMmQKa5PXV9lChoBmgJaA9DCPjCZKpgtBLAlIaUUpRoFUsyaBZHQKZS5mDDjzZ1fZQoaAZoCWgPQwhjl6jeGvAgwJSGlFKUaBVLMmgWR0CmVT2X1J18dX2UKGgGaAloD0MIq65DNSWZFMCUhpRSlGgVSzJoFkdAplSqDkELY3V9lChoBmgJaA9DCPNXyFwZFBfAlIaUUpRoFUsyaBZHQKZUaI2wV0t1fZQoaAZoCWgPQwiOWItPAVggwJSGlFKUaBVLMmgWR0CmVCdbX6IndX2UKGgGaAloD0MI5zQLtDu0JcCUhpRSlGgVSzJoFkdAplYqz7di2HV9lChoBmgJaA9DCFg89UiDuyHAlIaUUpRoFUsyaBZHQKZVlj1f3N91fZQoaAZoCWgPQwgNN+Dzw7gWwJSGlFKUaBVLMmgWR0CmVVTGgi/xdX2UKGgGaAloD0MISgwCK4f2IsCUhpRSlGgVSzJoFkdAplUTwz+FUXV9lChoBmgJaA9DCPJ8BtSbWSHAlIaUUpRoFUsyaBZHQKZXQ8L8aXN1fZQoaAZoCWgPQwh4Y0FhULYewJSGlFKUaBVLMmgWR0CmVrAlnh86dX2UKGgGaAloD0MIRpT2Bl9QJcCUhpRSlGgVSzJoFkdAplZvTmW+oXV9lChoBmgJaA9DCIMWEjC6XB3AlIaUUpRoFUsyaBZHQKZWL2VVxS51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -6.738633758202195, "std_reward": 2.5071037564512557, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-28T22:02:52.077371"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38f588568967fcb77d3102606bc7e2f5ee2bef085677d8a1d38c2e2a977db447
|
3 |
size 2387
|