undrwolf commited on
Commit
3b667bb
1 Parent(s): 902a83c

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.10 +/- 1.02
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc0c1ff08acaf1be8b06d7e391cec7d9a4097667746ae79c41d37cd0c9fd2796
3
+ size 107818
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cef1b0483a0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7cef1b037800>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1690492893933801643,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2nbQPhU4Irx3Uws/2nbQPhU4Irx3Uws/2nbQPhU4Irx3Uws/2nbQPhU4Irx3Uws/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEW6uv9n7o79fGJQ+Loipv8YTyD/a60i/XyLRv/GQ1L9k3NY/XgyIP/tuQj8G/16+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADadtA+FTgivHdTCz92/SC8UyBcuoHf4bvadtA+FTgivHdTCz92/SC8UyBcuoHf4bvadtA+FTgivHdTCz92/SC8UyBcuoHf4bvadtA+FTgivHdTCz92/SC8UyBcuoHf4buUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.40715677 -0.00990107 0.5442423 ]\n [ 0.40715677 -0.00990107 0.5442423 ]\n [ 0.40715677 -0.00990107 0.5442423 ]\n [ 0.40715677 -0.00990107 0.5442423 ]]",
38
+ "desired_goal": "[[-1.362734 -1.2811233 0.28924844]\n [-1.3244684 1.5631034 -0.7848488 ]\n [-1.6338614 -1.6606733 1.6786008 ]\n [ 1.0628774 0.7595059 -0.21776971]]",
39
+ "observation": "[[ 0.40715677 -0.00990107 0.5442423 -0.00982605 -0.00083972 -0.0068931 ]\n [ 0.40715677 -0.00990107 0.5442423 -0.00982605 -0.00083972 -0.0068931 ]\n [ 0.40715677 -0.00990107 0.5442423 -0.00982605 -0.00083972 -0.0068931 ]\n [ 0.40715677 -0.00990107 0.5442423 -0.00982605 -0.00083972 -0.0068931 ]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAn3f6vbCTXT3WSKU9dJrhPYshFz4Q7z49kAjNPKDZoD3i6iQ+E6+SvYL+Ub2s9YM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[-0.12229847 0.05409592 0.08070533]\n [ 0.11015788 0.1475889 0.04661471]\n [ 0.0250285 0.07854009 0.16105226]\n [-0.07162299 -0.05126811 0.2577337 ]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjiPW4lMABcCUhpRSlIwBbJRLMowBdJRHQJ/a9Net0V91fZQoaAZoCWgPQwha1Ce5w6YOwJSGlFKUaBVLMmgWR0Cf2nv8qFyrdX2UKGgGaAloD0MI1/Z2S3IAEsCUhpRSlGgVSzJoFkdAn9m+afBeonV9lChoBmgJaA9DCPILryR53hjAlIaUUpRoFUsyaBZHQJ/ZAv24/eN1fZQoaAZoCWgPQwgMO4xJf+8QwJSGlFKUaBVLMmgWR0Cf3JWQfZEldX2UKGgGaAloD0MIR1m/mZiu7L+UhpRSlGgVSzJoFkdAn9wbG3nZCnV9lChoBmgJaA9DCHy6umOxDfW/lIaUUpRoFUsyaBZHQJ/bXPiT+vR1fZQoaAZoCWgPQwjlmZfD7tsNwJSGlFKUaBVLMmgWR0Cf2qF85S3tdX2UKGgGaAloD0MIFJSilXvB9b+UhpRSlGgVSzJoFkdAn95SF9KEnXV9lChoBmgJaA9DCKpJ8IY06vq/lIaUUpRoFUsyaBZHQJ/d18neBQN1fZQoaAZoCWgPQwgMlX8tr5wHwJSGlFKUaBVLMmgWR0Cf3Rpm29csdX2UKGgGaAloD0MIPZrqyfwzE8CUhpRSlGgVSzJoFkdAn9xe76Hj63V9lChoBmgJaA9DCDs2AvG6vgrAlIaUUpRoFUsyaBZHQJ/f85WBBiV1fZQoaAZoCWgPQwjOwp52+GsDwJSGlFKUaBVLMmgWR0Cf33kiUxEfdX2UKGgGaAloD0MIBHRfzmxXC8CUhpRSlGgVSzJoFkdAn966+vhZQ3V9lChoBmgJaA9DCLUYPEz7hgLAlIaUUpRoFUsyaBZHQJ/d/0nPVut1fZQoaAZoCWgPQwipFhHF5O0FwJSGlFKUaBVLMmgWR0Cf4XimEXchdX2UKGgGaAloD0MIXr71Yb1xAsCUhpRSlGgVSzJoFkdAn+D9+kP+XXV9lChoBmgJaA9DCNgMcEG2DAjAlIaUUpRoFUsyaBZHQJ/gQEt/WlN1fZQoaAZoCWgPQwgzqDY4ET0KwJSGlFKUaBVLMmgWR0Cf34SjgydndX2UKGgGaAloD0MI6ui4Gtm1BMCUhpRSlGgVSzJoFkdAn+L1LWZqmHV9lChoBmgJaA9DCJ2+nq9ZrgjAlIaUUpRoFUsyaBZHQJ/ierIYFaB1fZQoaAZoCWgPQwh0sz9QblsMwJSGlFKUaBVLMmgWR0Cf4bxzJZGKdX2UKGgGaAloD0MIf2snSkKi/7+UhpRSlGgVSzJoFkdAn+EAyAQQMHV9lChoBmgJaA9DCDDzHfzEQQjAlIaUUpRoFUsyaBZHQJ/kker+5vt1fZQoaAZoCWgPQwgzqaENwAb+v5SGlFKUaBVLMmgWR0Cf5BdvsJIEdX2UKGgGaAloD0MIrG9gcqMI87+UhpRSlGgVSzJoFkdAn+NZbpu/DnV9lChoBmgJaA9DCCU+d4L9RxHAlIaUUpRoFUsyaBZHQJ/inh5xBE91fZQoaAZoCWgPQwj2RNeFHxz3v5SGlFKUaBVLMmgWR0Cf5huCf6GhdX2UKGgGaAloD0MIZd6q61ANAcCUhpRSlGgVSzJoFkdAn+Wg1zhgmnV9lChoBmgJaA9DCJqV7UPecvW/lIaUUpRoFUsyaBZHQJ/k4spXp4d1fZQoaAZoCWgPQwi2upwSEJP/v5SGlFKUaBVLMmgWR0Cf5CdNnGsFdX2UKGgGaAloD0MImN9pMuMtE8CUhpRSlGgVSzJoFkdAn+e61og3cnV9lChoBmgJaA9DCFFPH4E/XAfAlIaUUpRoFUsyaBZHQJ/nQHpr1ul1fZQoaAZoCWgPQwi21hcJbZkDwJSGlFKUaBVLMmgWR0Cf5oJvo/zKdX2UKGgGaAloD0MI4ScOoN8XAcCUhpRSlGgVSzJoFkdAn+XG0E5hjXV9lChoBmgJaA9DCPGBHf8FggnAlIaUUpRoFUsyaBZHQJ/pRZ8rqdJ1fZQoaAZoCWgPQwjp8uZwrVYGwJSGlFKUaBVLMmgWR0Cf6MsHB1s+dX2UKGgGaAloD0MIwi/186YiC8CUhpRSlGgVSzJoFkdAn+gMxTKkmHV9lChoBmgJaA9DCN/hdmhYDOe/lIaUUpRoFUsyaBZHQJ/nUaNuLrJ1fZQoaAZoCWgPQwhu2/eov973v5SGlFKUaBVLMmgWR0Cf6s+RoysTdX2UKGgGaAloD0MI0CaHTzrxFcCUhpRSlGgVSzJoFkdAn+pU+cH4XXV9lChoBmgJaA9DCOCFrdnKSwHAlIaUUpRoFUsyaBZHQJ/pluLrHEN1fZQoaAZoCWgPQwgD7KNTVz4KwJSGlFKUaBVLMmgWR0Cf6NtRekYXdX2UKGgGaAloD0MIs+xJYHNO/7+UhpRSlGgVSzJoFkdAn+xnMhX8wnV9lChoBmgJaA9DCDrNAu0OiQfAlIaUUpRoFUsyaBZHQJ/r7Ks+3Yt1fZQoaAZoCWgPQwg7/DVZox79v5SGlFKUaBVLMmgWR0Cf6y6GgzxgdX2UKGgGaAloD0MI5BJHHojsBsCUhpRSlGgVSzJoFkdAn+pyiItUXHV9lChoBmgJaA9DCBzO/GoOsAfAlIaUUpRoFUsyaBZHQJ/t8SBbwBp1fZQoaAZoCWgPQwgJ3pBGBc73v5SGlFKUaBVLMmgWR0Cf7XaAFxGUdX2UKGgGaAloD0MI7x8L0SHwAsCUhpRSlGgVSzJoFkdAn+y4Ui6g/XV9lChoBmgJaA9DCMecZ+xL9g3AlIaUUpRoFUsyaBZHQJ/r/JeVs1t1fZQoaAZoCWgPQwi3nEtxVRn5v5SGlFKUaBVLMmgWR0Cf724lhPTHdX2UKGgGaAloD0MIorWizXFOBcCUhpRSlGgVSzJoFkdAn+7zru6VdHV9lChoBmgJaA9DCJ7Swfo/h/m/lIaUUpRoFUsyaBZHQJ/uNXyRSxZ1fZQoaAZoCWgPQwgV4LvNG4cBwJSGlFKUaBVLMmgWR0Cf7Xn1FpfydX2UKGgGaAloD0MIL2zNVl6y/b+UhpRSlGgVSzJoFkdAn/DhI4EOiHV9lChoBmgJaA9DCKOwi6IHvg/AlIaUUpRoFUsyaBZHQJ/wZp5/smh1fZQoaAZoCWgPQwiv6xfshm37v5SGlFKUaBVLMmgWR0Cf76iIcinpdX2UKGgGaAloD0MIAtcVM8JbDsCUhpRSlGgVSzJoFkdAn+7s/QjUu3V9lChoBmgJaA9DCIveqYB7HgnAlIaUUpRoFUsyaBZHQJ/yc7Njbzt1fZQoaAZoCWgPQwiPjNXm/5UIwJSGlFKUaBVLMmgWR0Cf8fk0Jng6dX2UKGgGaAloD0MIjh6/t+lP+L+UhpRSlGgVSzJoFkdAn/E7CrLhaXV9lChoBmgJaA9DCIfhI2JKxArAlIaUUpRoFUsyaBZHQJ/wf2K2rn11fZQoaAZoCWgPQwjk2lAxzo8YwJSGlFKUaBVLMmgWR0Cf8+WluWKNdX2UKGgGaAloD0MIx0eLM4Z5/r+UhpRSlGgVSzJoFkdAn/NqvV3EAHV9lChoBmgJaA9DCEm5+xwfbf+/lIaUUpRoFUsyaBZHQJ/yrG+9Jz11fZQoaAZoCWgPQwgYd4NoregFwJSGlFKUaBVLMmgWR0Cf8fCg9NeudX2UKGgGaAloD0MIhbAaS1j7DMCUhpRSlGgVSzJoFkdAn/U36InBtXV9lChoBmgJaA9DCEi/fR04hw/AlIaUUpRoFUsyaBZHQJ/0vaxoqTd1fZQoaAZoCWgPQwgurvGZ7A8WwJSGlFKUaBVLMmgWR0Cf8/+MqBmPdX2UKGgGaAloD0MI/G1PkNiOCcCUhpRSlGgVSzJoFkdAn/NDq0MPSXV9lChoBmgJaA9DCKXAApgyEAzAlIaUUpRoFUsyaBZHQJ/2qLzf7791fZQoaAZoCWgPQwjboswGmWQVwJSGlFKUaBVLMmgWR0Cf9i3nIQvpdX2UKGgGaAloD0MIq5Se6SUGBMCUhpRSlGgVSzJoFkdAn/VvZmI0qHV9lChoBmgJaA9DCBnL9EvEWwXAlIaUUpRoFUsyaBZHQJ/0s5DJEIB1fZQoaAZoCWgPQwh3oiQk0hYGwJSGlFKUaBVLMmgWR0Cf+HnscABDdX2UKGgGaAloD0MIHw4SonzBFcCUhpRSlGgVSzJoFkdAn/f/0qYqonV9lChoBmgJaA9DCJQT7SqkXAPAlIaUUpRoFUsyaBZHQJ/3Qm1IAfd1fZQoaAZoCWgPQwjoFroSgYoNwJSGlFKUaBVLMmgWR0Cf9odyT6i1dX2UKGgGaAloD0MIfdCzWfVZCsCUhpRSlGgVSzJoFkdAn/qG3Sa3JHV9lChoBmgJaA9DCDuJCP8iSAXAlIaUUpRoFUsyaBZHQJ/6DMTviLl1fZQoaAZoCWgPQwhCe/Xx0BcBwJSGlFKUaBVLMmgWR0Cf+U9FnZkDdX2UKGgGaAloD0MI2lNyTuwBDsCUhpRSlGgVSzJoFkdAn/iUCNjslnV9lChoBmgJaA9DCBl2GJP+PgDAlIaUUpRoFUsyaBZHQJ/8kNPP9k11fZQoaAZoCWgPQwi3Qe23dkIIwJSGlFKUaBVLMmgWR0Cf/BbG3nZCdX2UKGgGaAloD0MI5usy/Ke7CMCUhpRSlGgVSzJoFkdAn/tY/7iyZHV9lChoBmgJaA9DCICAtWrXRAnAlIaUUpRoFUsyaBZHQJ/6nasZHd51fZQoaAZoCWgPQwi/9PbnomH6v5SGlFKUaBVLMmgWR0Cf/w/yXlbNdX2UKGgGaAloD0MIylLr/UYrE8CUhpRSlGgVSzJoFkdAn/6XRoh6jXV9lChoBmgJaA9DCEVJSKRtHArAlIaUUpRoFUsyaBZHQJ/92m65Gz91fZQoaAZoCWgPQwghk4ychb0PwJSGlFKUaBVLMmgWR0Cf/SCRwIdEdX2UKGgGaAloD0MILSeh9IVQE8CUhpRSlGgVSzJoFkdAoADG9g4OtnV9lChoBmgJaA9DCLvSMlLvafi/lIaUUpRoFUsyaBZHQKAAimNzbN91fZQoaAZoCWgPQwhS76mc9hT2v5SGlFKUaBVLMmgWR0CgACv/7zkIdX2UKGgGaAloD0MI0lW6u86G/L+UhpRSlGgVSzJoFkdAn/+dkvsZ53V9lChoBmgJaA9DCCR7hJohVQPAlIaUUpRoFUsyaBZHQKABjddmg8N1fZQoaAZoCWgPQwgpeXWOARkDwJSGlFKUaBVLMmgWR0CgAVBn8KoidX2UKGgGaAloD0MIMGR1q+fEAcCUhpRSlGgVSzJoFkdAoADxMzuWr3V9lChoBmgJaA9DCJCGU+bmewDAlIaUUpRoFUsyaBZHQKAAk0uUUwl1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e9c61413fc2e56bff270e681d07e893dd808abc81e708eafff23ba691df3743
3
+ size 44606
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:633d176706ac59c9a1e7ef4cc0348546d8234f21f490d9064ae13588f25a498b
3
+ size 45886
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: False
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cef1b0483a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cef1b037800>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690492893933801643, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2nbQPhU4Irx3Uws/2nbQPhU4Irx3Uws/2nbQPhU4Irx3Uws/2nbQPhU4Irx3Uws/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEW6uv9n7o79fGJQ+Loipv8YTyD/a60i/XyLRv/GQ1L9k3NY/XgyIP/tuQj8G/16+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADadtA+FTgivHdTCz92/SC8UyBcuoHf4bvadtA+FTgivHdTCz92/SC8UyBcuoHf4bvadtA+FTgivHdTCz92/SC8UyBcuoHf4bvadtA+FTgivHdTCz92/SC8UyBcuoHf4buUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40715677 -0.00990107 0.5442423 ]\n [ 0.40715677 -0.00990107 0.5442423 ]\n [ 0.40715677 -0.00990107 0.5442423 ]\n [ 0.40715677 -0.00990107 0.5442423 ]]", "desired_goal": "[[-1.362734 -1.2811233 0.28924844]\n [-1.3244684 1.5631034 -0.7848488 ]\n [-1.6338614 -1.6606733 1.6786008 ]\n [ 1.0628774 0.7595059 -0.21776971]]", "observation": "[[ 0.40715677 -0.00990107 0.5442423 -0.00982605 -0.00083972 -0.0068931 ]\n [ 0.40715677 -0.00990107 0.5442423 -0.00982605 -0.00083972 -0.0068931 ]\n [ 0.40715677 -0.00990107 0.5442423 -0.00982605 -0.00083972 -0.0068931 ]\n [ 0.40715677 -0.00990107 0.5442423 -0.00982605 -0.00083972 -0.0068931 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAn3f6vbCTXT3WSKU9dJrhPYshFz4Q7z49kAjNPKDZoD3i6iQ+E6+SvYL+Ub2s9YM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.12229847 0.05409592 0.08070533]\n [ 0.11015788 0.1475889 0.04661471]\n [ 0.0250285 0.07854009 0.16105226]\n [-0.07162299 -0.05126811 0.2577337 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjiPW4lMABcCUhpRSlIwBbJRLMowBdJRHQJ/a9Net0V91fZQoaAZoCWgPQwha1Ce5w6YOwJSGlFKUaBVLMmgWR0Cf2nv8qFyrdX2UKGgGaAloD0MI1/Z2S3IAEsCUhpRSlGgVSzJoFkdAn9m+afBeonV9lChoBmgJaA9DCPILryR53hjAlIaUUpRoFUsyaBZHQJ/ZAv24/eN1fZQoaAZoCWgPQwgMO4xJf+8QwJSGlFKUaBVLMmgWR0Cf3JWQfZEldX2UKGgGaAloD0MIR1m/mZiu7L+UhpRSlGgVSzJoFkdAn9wbG3nZCnV9lChoBmgJaA9DCHy6umOxDfW/lIaUUpRoFUsyaBZHQJ/bXPiT+vR1fZQoaAZoCWgPQwjlmZfD7tsNwJSGlFKUaBVLMmgWR0Cf2qF85S3tdX2UKGgGaAloD0MIFJSilXvB9b+UhpRSlGgVSzJoFkdAn95SF9KEnXV9lChoBmgJaA9DCKpJ8IY06vq/lIaUUpRoFUsyaBZHQJ/d18neBQN1fZQoaAZoCWgPQwgMlX8tr5wHwJSGlFKUaBVLMmgWR0Cf3Rpm29csdX2UKGgGaAloD0MIPZrqyfwzE8CUhpRSlGgVSzJoFkdAn9xe76Hj63V9lChoBmgJaA9DCDs2AvG6vgrAlIaUUpRoFUsyaBZHQJ/f85WBBiV1fZQoaAZoCWgPQwjOwp52+GsDwJSGlFKUaBVLMmgWR0Cf33kiUxEfdX2UKGgGaAloD0MIBHRfzmxXC8CUhpRSlGgVSzJoFkdAn966+vhZQ3V9lChoBmgJaA9DCLUYPEz7hgLAlIaUUpRoFUsyaBZHQJ/d/0nPVut1fZQoaAZoCWgPQwipFhHF5O0FwJSGlFKUaBVLMmgWR0Cf4XimEXchdX2UKGgGaAloD0MIXr71Yb1xAsCUhpRSlGgVSzJoFkdAn+D9+kP+XXV9lChoBmgJaA9DCNgMcEG2DAjAlIaUUpRoFUsyaBZHQJ/gQEt/WlN1fZQoaAZoCWgPQwgzqDY4ET0KwJSGlFKUaBVLMmgWR0Cf34SjgydndX2UKGgGaAloD0MI6ui4Gtm1BMCUhpRSlGgVSzJoFkdAn+L1LWZqmHV9lChoBmgJaA9DCJ2+nq9ZrgjAlIaUUpRoFUsyaBZHQJ/ierIYFaB1fZQoaAZoCWgPQwh0sz9QblsMwJSGlFKUaBVLMmgWR0Cf4bxzJZGKdX2UKGgGaAloD0MIf2snSkKi/7+UhpRSlGgVSzJoFkdAn+EAyAQQMHV9lChoBmgJaA9DCDDzHfzEQQjAlIaUUpRoFUsyaBZHQJ/kker+5vt1fZQoaAZoCWgPQwgzqaENwAb+v5SGlFKUaBVLMmgWR0Cf5BdvsJIEdX2UKGgGaAloD0MIrG9gcqMI87+UhpRSlGgVSzJoFkdAn+NZbpu/DnV9lChoBmgJaA9DCCU+d4L9RxHAlIaUUpRoFUsyaBZHQJ/inh5xBE91fZQoaAZoCWgPQwj2RNeFHxz3v5SGlFKUaBVLMmgWR0Cf5huCf6GhdX2UKGgGaAloD0MIZd6q61ANAcCUhpRSlGgVSzJoFkdAn+Wg1zhgmnV9lChoBmgJaA9DCJqV7UPecvW/lIaUUpRoFUsyaBZHQJ/k4spXp4d1fZQoaAZoCWgPQwi2upwSEJP/v5SGlFKUaBVLMmgWR0Cf5CdNnGsFdX2UKGgGaAloD0MImN9pMuMtE8CUhpRSlGgVSzJoFkdAn+e61og3cnV9lChoBmgJaA9DCFFPH4E/XAfAlIaUUpRoFUsyaBZHQJ/nQHpr1ul1fZQoaAZoCWgPQwi21hcJbZkDwJSGlFKUaBVLMmgWR0Cf5oJvo/zKdX2UKGgGaAloD0MI4ScOoN8XAcCUhpRSlGgVSzJoFkdAn+XG0E5hjXV9lChoBmgJaA9DCPGBHf8FggnAlIaUUpRoFUsyaBZHQJ/pRZ8rqdJ1fZQoaAZoCWgPQwjp8uZwrVYGwJSGlFKUaBVLMmgWR0Cf6MsHB1s+dX2UKGgGaAloD0MIwi/186YiC8CUhpRSlGgVSzJoFkdAn+gMxTKkmHV9lChoBmgJaA9DCN/hdmhYDOe/lIaUUpRoFUsyaBZHQJ/nUaNuLrJ1fZQoaAZoCWgPQwhu2/eov973v5SGlFKUaBVLMmgWR0Cf6s+RoysTdX2UKGgGaAloD0MI0CaHTzrxFcCUhpRSlGgVSzJoFkdAn+pU+cH4XXV9lChoBmgJaA9DCOCFrdnKSwHAlIaUUpRoFUsyaBZHQJ/pluLrHEN1fZQoaAZoCWgPQwgD7KNTVz4KwJSGlFKUaBVLMmgWR0Cf6NtRekYXdX2UKGgGaAloD0MIs+xJYHNO/7+UhpRSlGgVSzJoFkdAn+xnMhX8wnV9lChoBmgJaA9DCDrNAu0OiQfAlIaUUpRoFUsyaBZHQJ/r7Ks+3Yt1fZQoaAZoCWgPQwg7/DVZox79v5SGlFKUaBVLMmgWR0Cf6y6GgzxgdX2UKGgGaAloD0MI5BJHHojsBsCUhpRSlGgVSzJoFkdAn+pyiItUXHV9lChoBmgJaA9DCBzO/GoOsAfAlIaUUpRoFUsyaBZHQJ/t8SBbwBp1fZQoaAZoCWgPQwgJ3pBGBc73v5SGlFKUaBVLMmgWR0Cf7XaAFxGUdX2UKGgGaAloD0MI7x8L0SHwAsCUhpRSlGgVSzJoFkdAn+y4Ui6g/XV9lChoBmgJaA9DCMecZ+xL9g3AlIaUUpRoFUsyaBZHQJ/r/JeVs1t1fZQoaAZoCWgPQwi3nEtxVRn5v5SGlFKUaBVLMmgWR0Cf724lhPTHdX2UKGgGaAloD0MIorWizXFOBcCUhpRSlGgVSzJoFkdAn+7zru6VdHV9lChoBmgJaA9DCJ7Swfo/h/m/lIaUUpRoFUsyaBZHQJ/uNXyRSxZ1fZQoaAZoCWgPQwgV4LvNG4cBwJSGlFKUaBVLMmgWR0Cf7Xn1FpfydX2UKGgGaAloD0MIL2zNVl6y/b+UhpRSlGgVSzJoFkdAn/DhI4EOiHV9lChoBmgJaA9DCKOwi6IHvg/AlIaUUpRoFUsyaBZHQJ/wZp5/smh1fZQoaAZoCWgPQwiv6xfshm37v5SGlFKUaBVLMmgWR0Cf76iIcinpdX2UKGgGaAloD0MIAtcVM8JbDsCUhpRSlGgVSzJoFkdAn+7s/QjUu3V9lChoBmgJaA9DCIveqYB7HgnAlIaUUpRoFUsyaBZHQJ/yc7Njbzt1fZQoaAZoCWgPQwiPjNXm/5UIwJSGlFKUaBVLMmgWR0Cf8fk0Jng6dX2UKGgGaAloD0MIjh6/t+lP+L+UhpRSlGgVSzJoFkdAn/E7CrLhaXV9lChoBmgJaA9DCIfhI2JKxArAlIaUUpRoFUsyaBZHQJ/wf2K2rn11fZQoaAZoCWgPQwjk2lAxzo8YwJSGlFKUaBVLMmgWR0Cf8+WluWKNdX2UKGgGaAloD0MIx0eLM4Z5/r+UhpRSlGgVSzJoFkdAn/NqvV3EAHV9lChoBmgJaA9DCEm5+xwfbf+/lIaUUpRoFUsyaBZHQJ/yrG+9Jz11fZQoaAZoCWgPQwgYd4NoregFwJSGlFKUaBVLMmgWR0Cf8fCg9NeudX2UKGgGaAloD0MIhbAaS1j7DMCUhpRSlGgVSzJoFkdAn/U36InBtXV9lChoBmgJaA9DCEi/fR04hw/AlIaUUpRoFUsyaBZHQJ/0vaxoqTd1fZQoaAZoCWgPQwgurvGZ7A8WwJSGlFKUaBVLMmgWR0Cf8/+MqBmPdX2UKGgGaAloD0MI/G1PkNiOCcCUhpRSlGgVSzJoFkdAn/NDq0MPSXV9lChoBmgJaA9DCKXAApgyEAzAlIaUUpRoFUsyaBZHQJ/2qLzf7791fZQoaAZoCWgPQwjboswGmWQVwJSGlFKUaBVLMmgWR0Cf9i3nIQvpdX2UKGgGaAloD0MIq5Se6SUGBMCUhpRSlGgVSzJoFkdAn/VvZmI0qHV9lChoBmgJaA9DCBnL9EvEWwXAlIaUUpRoFUsyaBZHQJ/0s5DJEIB1fZQoaAZoCWgPQwh3oiQk0hYGwJSGlFKUaBVLMmgWR0Cf+HnscABDdX2UKGgGaAloD0MIHw4SonzBFcCUhpRSlGgVSzJoFkdAn/f/0qYqonV9lChoBmgJaA9DCJQT7SqkXAPAlIaUUpRoFUsyaBZHQJ/3Qm1IAfd1fZQoaAZoCWgPQwjoFroSgYoNwJSGlFKUaBVLMmgWR0Cf9odyT6i1dX2UKGgGaAloD0MIfdCzWfVZCsCUhpRSlGgVSzJoFkdAn/qG3Sa3JHV9lChoBmgJaA9DCDuJCP8iSAXAlIaUUpRoFUsyaBZHQJ/6DMTviLl1fZQoaAZoCWgPQwhCe/Xx0BcBwJSGlFKUaBVLMmgWR0Cf+U9FnZkDdX2UKGgGaAloD0MI2lNyTuwBDsCUhpRSlGgVSzJoFkdAn/iUCNjslnV9lChoBmgJaA9DCBl2GJP+PgDAlIaUUpRoFUsyaBZHQJ/8kNPP9k11fZQoaAZoCWgPQwi3Qe23dkIIwJSGlFKUaBVLMmgWR0Cf/BbG3nZCdX2UKGgGaAloD0MI5usy/Ke7CMCUhpRSlGgVSzJoFkdAn/tY/7iyZHV9lChoBmgJaA9DCICAtWrXRAnAlIaUUpRoFUsyaBZHQJ/6nasZHd51fZQoaAZoCWgPQwi/9PbnomH6v5SGlFKUaBVLMmgWR0Cf/w/yXlbNdX2UKGgGaAloD0MIylLr/UYrE8CUhpRSlGgVSzJoFkdAn/6XRoh6jXV9lChoBmgJaA9DCEVJSKRtHArAlIaUUpRoFUsyaBZHQJ/92m65Gz91fZQoaAZoCWgPQwghk4ychb0PwJSGlFKUaBVLMmgWR0Cf/SCRwIdEdX2UKGgGaAloD0MILSeh9IVQE8CUhpRSlGgVSzJoFkdAoADG9g4OtnV9lChoBmgJaA9DCLvSMlLvafi/lIaUUpRoFUsyaBZHQKAAimNzbN91fZQoaAZoCWgPQwhS76mc9hT2v5SGlFKUaBVLMmgWR0CgACv/7zkIdX2UKGgGaAloD0MI0lW6u86G/L+UhpRSlGgVSzJoFkdAn/+dkvsZ53V9lChoBmgJaA9DCCR7hJohVQPAlIaUUpRoFUsyaBZHQKABjddmg8N1fZQoaAZoCWgPQwgpeXWOARkDwJSGlFKUaBVLMmgWR0CgAVBn8KoidX2UKGgGaAloD0MIMGR1q+fEAcCUhpRSlGgVSzJoFkdAoADxMzuWr3V9lChoBmgJaA9DCJCGU+bmewDAlIaUUpRoFUsyaBZHQKAAk0uUUwl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (689 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.1004306670743973, "std_reward": 1.0220814975348824, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-27T21:57:41.751634"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8893dd59f77424fd54d50e08ff89d54143a753a34bbc332b28c73cc41e123cc9
3
+ size 2387