--- datasets: - unicamp-dl/mmarco language: - pt pipeline_tag: text2text-generation base_model: unicamp-dl/ptt5-v2-3b --- ## Introduction MonoPTT5 models are T5 rerankers for the Portuguese language. Starting from [ptt5-v2 checkpoints](https://huggingface.co/collections/unicamp-dl/ptt5-v2-666538a650188ba00aa8d2d0), they were trained for 100k steps on a mixture of Portuguese and English data from the mMARCO dataset. For further information on the training and evaluation of these models, please refer to our paper, [ptt5-v2: A Closer Look at Continued Pretraining of T5 Models for the Portuguese Language](https://arxiv.org/abs/2008.09144). ## Usage The easiest way to use our models is through the `rerankers` package. After installing the package using `pip install rerankers[transformers]`, the following code can be used as a minimal working example: ```python from rerankers import Reranker import torch query = "O futebol é uma paixão nacional" docs = [ "O futebol é superestimado e não deveria receber tanta atenção.", "O futebol é uma parte essencial da cultura brasileira e une as pessoas.", ] ranker = Reranker( "unicamp-dl/monoptt5-3b", inputs_template="Pergunta: {query} Documento: {text} Relevante:", dtype=torch.float32 # or bfloat16 if supported by your GPU ) results = ranker.rank(query, docs) print("Classification results:") for result in results: print(result) # Loading T5Ranker model unicamp-dl/monoptt5-3b # No device set # Using device cuda # Using dtype torch.float32 # Loading model unicamp-dl/monoptt5-3b, this might take a while... # Using device cuda. # Using dtype torch.float32. # T5 true token set to ▁Sim # T5 false token set to ▁Não # Returning normalised scores... # Inputs template set to Pergunta: {query} Documento: {text} Relevante: # Classification results: # document=Document(text='O futebol é uma parte essencial da cultura brasileira e une as pessoas.', doc_id=1, metadata={}) score=0.9612176418304443 rank=1 # document=Document(text='O futebol é superestimado e não deveria receber tanta atenção.', doc_id=0, metadata={}) score=0.09502816945314407 rank=2 ``` For additional configurations and more advanced usage, consult the `rerankers` [GitHub repository](https://github.com/AnswerDotAI/rerankers). ## Citation If you use our models, please cite: ``` @misc{piau2024ptt5v2, title={ptt5-v2: A Closer Look at Continued Pretraining of T5 Models for the Portuguese Language}, author={Marcos Piau and Roberto Lotufo and Rodrigo Nogueira}, year={2024}, eprint={2406.10806}, archivePrefix={arXiv}, primaryClass={id='cs.CL' full_name='Computation and Language' is_active=True alt_name='cmp-lg' in_archive='cs' is_general=False description='Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.'} } ```