lhbonifacio commited on
Commit
b5ce2f0
1 Parent(s): 188ffba

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -14,26 +14,26 @@ widget:
14
  - text: "Texto de exemplo em português"
15
  inference: false
16
  ---
17
- # PTT5-base Reranker finetuned on both English and Portuguese MS MARCO
18
  ## Introduction
19
- ptt5-base-msmarco-en-pt-10k is a T5-based model pretrained in the BrWac corpus, finetuned on both English and Portuguese translated version of MS MARCO passage dataset. This model was finetuned for 10k steps.
20
  Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository.
21
  ## Usage
22
  ```python
23
 
24
  from transformers import T5Tokenizer, T5ForConditionalGeneration
25
 
26
- model_name = 'unicamp-dl/ptt5-base-msmarco-en-pt-10k'
27
  tokenizer = T5Tokenizer.from_pretrained(model_name)
28
  model = T5ForConditionalGeneration.from_pretrained(model_name)
29
 
30
  ```
31
  # Citation
32
- If you use ptt5-base-msmarco-en-pt-10k, please cite:
33
 
34
  @misc{bonifacio2021mmarco,
35
  title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset},
36
- author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
37
  year={2021},
38
  eprint={2108.13897},
39
  archivePrefix={arXiv},
 
14
  - text: "Texto de exemplo em português"
15
  inference: false
16
  ---
17
+ # PTT5-base-msmarco-en-pt-10k-v1 Reranker finetuned on both English and Portuguese MS MARCO
18
  ## Introduction
19
+ ptt5-base-msmarco-en-pt-10k-v1 is a T5-based model pretrained in the BrWac corpus, fine-tuned on both English and Portuguese translated version of MS MARCO passage dataset. In the version v1, the Portuguese dataset was translated using [Helsinki](https://huggingface.co/Helsinki-NLP) NMT model. This model was finetuned for 10k steps.
20
  Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository.
21
  ## Usage
22
  ```python
23
 
24
  from transformers import T5Tokenizer, T5ForConditionalGeneration
25
 
26
+ model_name = 'unicamp-dl/ptt5-base-msmarco-en-pt-10k-v1'
27
  tokenizer = T5Tokenizer.from_pretrained(model_name)
28
  model = T5ForConditionalGeneration.from_pretrained(model_name)
29
 
30
  ```
31
  # Citation
32
+ If you use ptt5-base-msmarco-en-pt-10k-v1, please cite:
33
 
34
  @misc{bonifacio2021mmarco,
35
  title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset},
36
+ author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira},
37
  year={2021},
38
  eprint={2108.13897},
39
  archivePrefix={arXiv},