File size: 5,474 Bytes
5f14f33
 
 
 
 
f872bac
5f14f33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f872bac
 
 
5f14f33
 
 
 
 
f872bac
5f14f33
f872bac
5f14f33
 
 
 
f872bac
 
 
 
5f14f33
f872bac
5f14f33
 
f872bac
5f14f33
f872bac
 
 
 
 
 
 
 
 
5f14f33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f872bac
 
 
5f14f33
 
 
 
f872bac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f14f33
f872bac
5f14f33
 
 
f872bac
5f14f33
f872bac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f14f33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f872bac
 
5f14f33
 
f872bac
5f14f33
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
using System.Collections.Generic;
using UnityEngine;
using Unity.Sentis;
using System.IO;
using System.Text;
using FF = Unity.Sentis.Functional;

/*
 *              Tiny Stories Inference Code
 *              ===========================
 *  
 *  Put this script on the Main Camera
 *  
 *  In Assets/StreamingAssets put:
 *  
 *  MiniLMv6.sentis
 *  vocab.txt
 * 
 *  Install package com.unity.sentis
 * 
 */


public class MiniLM : MonoBehaviour
{
    const BackendType backend = BackendType.GPUCompute;

    string string1 = "That is a happy person";          // similarity = 1

    //Choose a string to comapre string1  to:
    string string2 = "That is a happy dog";             // similarity = 0.695
    //string string2 = "That is a very happy person";   // similarity = 0.943
    //string string2 = "Today is a sunny day";          // similarity = 0.257

    //Special tokens
    const int START_TOKEN = 101; 
    const int END_TOKEN = 102; 

    //Store the vocabulary
    string[] tokens;

    const int FEATURES = 384; //size of feature space

    IWorker engine, dotScore;

    void Start()
    {
        tokens = File.ReadAllLines(Application.streamingAssetsPath + "/vocab.txt");

        engine = CreateMLModel();

        dotScore = CreateDotScoreModel();

        var tokens1 = GetTokens(string1);
        var tokens2 = GetTokens(string2);

        using TensorFloat embedding1 = GetEmbedding(tokens1);
        using TensorFloat embedding2 = GetEmbedding(tokens2);

        float score = GetDotScore(embedding1, embedding2);

        Debug.Log("Similarity Score: " + score);
    }

    float GetDotScore(TensorFloat A, TensorFloat B)
    {
        var inputs = new Dictionary<string, Tensor>()
        {
            { "input_0", A },
            { "input_1", B }
        };
        dotScore.Execute(inputs);
        var output = dotScore.PeekOutput() as TensorFloat;
        output.CompleteOperationsAndDownload();
        return output[0];
    }

    TensorFloat GetEmbedding(List<int> tokens)
    {
        int N = tokens.Count;
        using var input_ids = new TensorInt(new TensorShape(1, N), tokens.ToArray());
        using var token_type_ids = new TensorInt(new TensorShape(1, N), new int[N]);
        int[] mask = new int[N];
        for (int i = 0; i < mask.Length; i++)
        {
            mask[i] = 1;
        }
        using var attention_mask = new TensorInt(new TensorShape(1, N), mask);

        var inputs = new Dictionary<string, Tensor>
        {
            {"input_0", input_ids },
            {"input_1", attention_mask },
            {"input_2", token_type_ids}
        };

        engine.Execute(inputs);

        var output = engine.TakeOutputOwnership("output_0") as TensorFloat;
        return output;
    }

    IWorker CreateMLModel()
    {
        Model model = ModelLoader.Load(Application.streamingAssetsPath + "/MiniLMv6.sentis");

        Model modelWithMeanPooling = Functional.Compile(
          (input_ids, attention_mask, token_type_ids) =>
          {
              var tokenEmbeddings = model.Forward(input_ids, attention_mask, token_type_ids)[0];
              return MeanPooling(tokenEmbeddings, attention_mask);
          },
          (model.inputs[0], model.inputs[1], model.inputs[2])
        );

        return WorkerFactory.CreateWorker(backend, modelWithMeanPooling);
    }

    //Get average of token embeddings taking into account the attention mask
    FunctionalTensor MeanPooling(FunctionalTensor tokenEmbeddings, FunctionalTensor attentionMask)
    {
        var mask = attentionMask.Unsqueeze(-1).BroadcastTo(new[] { FEATURES });     //shape=(1,N,FEATURES)
        var A = FF.ReduceSum(tokenEmbeddings * mask, 1, false);                     //shape=(1,FEATURES)       
        var B = A / (FF.ReduceSum(mask, 1, false) + 1e-9f);                         //shape=(1,FEATURES)
        var C = FF.Sqrt(FF.ReduceSum(FF.Square(B), 1, true));                       //shape=(1,FEATURES)
        return B / C;                                                               //shape=(1,FEATURES)
    }

    IWorker CreateDotScoreModel()
    {
        Model dotScoreModel = Functional.Compile(
            (input1, input2) => Functional.ReduceSum(input1 * input2, 1),
            (InputDef.Float(new TensorShape(1, FEATURES)),
            InputDef.Float(new TensorShape(1, FEATURES)))
        );

        return WorkerFactory.CreateWorker(backend, dotScoreModel);
    }

    List<int> GetTokens(string text)
    {
        //split over whitespace
        string[] words = text.ToLower().Split(null);

        var ids = new List<int>
        {
            START_TOKEN
        };

        string s = "";

        foreach (var word in words)
        {
            int start = 0;
            for(int i = word.Length; i >= 0;i--)
            {
                string subword = start == 0 ? word.Substring(start, i) : "##" + word.Substring(start, i-start);
                int index = System.Array.IndexOf(tokens, subword);
                if (index >= 0)
                {
                    ids.Add(index);
                    s += subword + " ";
                    if (i == word.Length) break;
                    start = i;
                    i = word.Length + 1;
                }
            }
        }

        ids.Add(END_TOKEN);

        Debug.Log("Tokenized sentece = " + s);

        return ids;
    }

    private void OnDestroy()
    { 
        dotScore?.Dispose();
        engine?.Dispose();
    }

}