File size: 5,474 Bytes
5f14f33 f872bac 5f14f33 f872bac 5f14f33 f872bac 5f14f33 f872bac 5f14f33 f872bac 5f14f33 f872bac 5f14f33 f872bac 5f14f33 f872bac 5f14f33 f872bac 5f14f33 f872bac 5f14f33 f872bac 5f14f33 f872bac 5f14f33 f872bac 5f14f33 f872bac 5f14f33 f872bac 5f14f33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
using System.Collections.Generic;
using UnityEngine;
using Unity.Sentis;
using System.IO;
using System.Text;
using FF = Unity.Sentis.Functional;
/*
* Tiny Stories Inference Code
* ===========================
*
* Put this script on the Main Camera
*
* In Assets/StreamingAssets put:
*
* MiniLMv6.sentis
* vocab.txt
*
* Install package com.unity.sentis
*
*/
public class MiniLM : MonoBehaviour
{
const BackendType backend = BackendType.GPUCompute;
string string1 = "That is a happy person"; // similarity = 1
//Choose a string to comapre string1 to:
string string2 = "That is a happy dog"; // similarity = 0.695
//string string2 = "That is a very happy person"; // similarity = 0.943
//string string2 = "Today is a sunny day"; // similarity = 0.257
//Special tokens
const int START_TOKEN = 101;
const int END_TOKEN = 102;
//Store the vocabulary
string[] tokens;
const int FEATURES = 384; //size of feature space
IWorker engine, dotScore;
void Start()
{
tokens = File.ReadAllLines(Application.streamingAssetsPath + "/vocab.txt");
engine = CreateMLModel();
dotScore = CreateDotScoreModel();
var tokens1 = GetTokens(string1);
var tokens2 = GetTokens(string2);
using TensorFloat embedding1 = GetEmbedding(tokens1);
using TensorFloat embedding2 = GetEmbedding(tokens2);
float score = GetDotScore(embedding1, embedding2);
Debug.Log("Similarity Score: " + score);
}
float GetDotScore(TensorFloat A, TensorFloat B)
{
var inputs = new Dictionary<string, Tensor>()
{
{ "input_0", A },
{ "input_1", B }
};
dotScore.Execute(inputs);
var output = dotScore.PeekOutput() as TensorFloat;
output.CompleteOperationsAndDownload();
return output[0];
}
TensorFloat GetEmbedding(List<int> tokens)
{
int N = tokens.Count;
using var input_ids = new TensorInt(new TensorShape(1, N), tokens.ToArray());
using var token_type_ids = new TensorInt(new TensorShape(1, N), new int[N]);
int[] mask = new int[N];
for (int i = 0; i < mask.Length; i++)
{
mask[i] = 1;
}
using var attention_mask = new TensorInt(new TensorShape(1, N), mask);
var inputs = new Dictionary<string, Tensor>
{
{"input_0", input_ids },
{"input_1", attention_mask },
{"input_2", token_type_ids}
};
engine.Execute(inputs);
var output = engine.TakeOutputOwnership("output_0") as TensorFloat;
return output;
}
IWorker CreateMLModel()
{
Model model = ModelLoader.Load(Application.streamingAssetsPath + "/MiniLMv6.sentis");
Model modelWithMeanPooling = Functional.Compile(
(input_ids, attention_mask, token_type_ids) =>
{
var tokenEmbeddings = model.Forward(input_ids, attention_mask, token_type_ids)[0];
return MeanPooling(tokenEmbeddings, attention_mask);
},
(model.inputs[0], model.inputs[1], model.inputs[2])
);
return WorkerFactory.CreateWorker(backend, modelWithMeanPooling);
}
//Get average of token embeddings taking into account the attention mask
FunctionalTensor MeanPooling(FunctionalTensor tokenEmbeddings, FunctionalTensor attentionMask)
{
var mask = attentionMask.Unsqueeze(-1).BroadcastTo(new[] { FEATURES }); //shape=(1,N,FEATURES)
var A = FF.ReduceSum(tokenEmbeddings * mask, 1, false); //shape=(1,FEATURES)
var B = A / (FF.ReduceSum(mask, 1, false) + 1e-9f); //shape=(1,FEATURES)
var C = FF.Sqrt(FF.ReduceSum(FF.Square(B), 1, true)); //shape=(1,FEATURES)
return B / C; //shape=(1,FEATURES)
}
IWorker CreateDotScoreModel()
{
Model dotScoreModel = Functional.Compile(
(input1, input2) => Functional.ReduceSum(input1 * input2, 1),
(InputDef.Float(new TensorShape(1, FEATURES)),
InputDef.Float(new TensorShape(1, FEATURES)))
);
return WorkerFactory.CreateWorker(backend, dotScoreModel);
}
List<int> GetTokens(string text)
{
//split over whitespace
string[] words = text.ToLower().Split(null);
var ids = new List<int>
{
START_TOKEN
};
string s = "";
foreach (var word in words)
{
int start = 0;
for(int i = word.Length; i >= 0;i--)
{
string subword = start == 0 ? word.Substring(start, i) : "##" + word.Substring(start, i-start);
int index = System.Array.IndexOf(tokens, subword);
if (index >= 0)
{
ids.Add(index);
s += subword + " ";
if (i == word.Length) break;
start = i;
i = word.Length + 1;
}
}
}
ids.Add(END_TOKEN);
Debug.Log("Tokenized sentece = " + s);
return ids;
}
private void OnDestroy()
{
dotScore?.Dispose();
engine?.Dispose();
}
}
|