File size: 10,248 Bytes
6df43b3 55d35e7 6df43b3 55d35e7 6df43b3 55d35e7 6df43b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using Unity.Sentis;
using Newtonsoft.Json;
// Inference for MusicGen-300
// ==========================
//
// Details
// -------
// The model predicts 4 streams of codes staggered like this:
// * * * a b c
// * * a b c
// * a b c
// a b c
// Then aligns the streams so that it groups all the a's togther etc.
// Put sentis files and json file in Assets/StreamingAssets folder
// Put this script on the Main Camera object
// Put an audiosource on the Main Camera
// Press play and see console window for updates
// See https://github.com/huggingface/transformers/blob/main/src/transformers/models/musicgen/modeling_musicgen.py
public class RunMusicGen : MonoBehaviour
{
//Change this prompt to whatever you like:
string prompt = "80s pop track with bassy drums and synth";
// number of seconds to create clip for (up to 30 seconds)
const int seconds = 2;
// Make this value smaller to make music more random
float predictability = 1f;
BackendType backendType = BackendType.GPUCompute;
public AudioClip clip;
IWorker toWavEngine, decoderEngine, textEngine, projectEngine;
const int numCodeBooks = 4;
// Special music decoder tokens
const int DECODER_START_TOKEN = 2048;
// Special text encoder tokens
const int END_TEXT_TOKEN = 1;
int decoderTokens; //text tokens
List<int> tokensSoFar = new();
TensorFloat encoder_hidden_states;
TensorInt encoder_attention_mask, input_ids;
Ops ops;
Model decoder;
// How much to stagger each code stream by wrt the next one
int DELAY = 1;
// Vocab list
List<string> tokens = new List<string>();
//The output frequency must be 32kHz
const int outputFrequency = 32000;
int maxFrames;
List<int> TOKENS;
int frame = 0;
bool hasDecodedMusic = false;
void Start()
{
ops = WorkerFactory.CreateOps(backendType, null);
maxFrames = 50 * seconds + 3;
LoadVocab();
TOKENS = GetTokens(prompt);
Debug.Log("Parsed tokens=\n" + string.Join(",", TOKENS));
CreateAttentionMask();
ParseText();
LoadDecoderModel();
SetupMusicCodeStreams();
frame = 0;
}
void LoadDecoderModel()
{
decoder = ModelLoader.Load(Application.streamingAssetsPath + "/decoder.sentis");
decoderEngine = WorkerFactory.CreateWorker(backendType, decoder);
}
void CreateAttentionMask()
{
int[] mask = new int[1 * decoderTokens];
for (int i = 0; i < mask.Length; i++) mask[i] = 1;
encoder_attention_mask = new TensorInt(new TensorShape(1, decoderTokens), mask);
}
void SetupMusicCodeStreams()
{
//Sets the staggered start codes
tokensSoFar.AddRange(new int[numCodeBooks * maxFrames]);
for (int j = 0; j < maxFrames; j++)
{
for (int i = 0; i < numCodeBooks; i++)
{
if ( i * DELAY >= j)
{
tokensSoFar[i * maxFrames + j] = DECODER_START_TOKEN;
}
else
{
tokensSoFar[i * maxFrames + j] = -1;
}
}
}
input_ids = new TensorInt(new TensorShape(numCodeBooks, maxFrames), tokensSoFar.ToArray());
}
List<int> GetTokens(string text)
{
//split over whitespace
string[] words = text.ToLower().Split(null);
for (int i = 0; i < words.Length; i++) words[i] = " " + words[i];
var ids = new List<int>();
string s = "";
foreach (var word in words)
{
int start = 0;
for (int i = word.Length; i >= 0; i--)
{
string subword = word.Substring(start, i - start);
int index = tokens.IndexOf(subword);
if (index >= 0)
{
ids.Add(index);
s += subword + " ";
if (i == word.Length) break;
start = i;
i = word.Length + 1;
}
}
}
ids.Add(END_TEXT_TOKEN);
decoderTokens = ids.Count;
Debug.Log("Tokenized sentece = " + s);
return ids;
}
void ParseText()
{
Model textencoder = ModelLoader.Load(Application.streamingAssetsPath + "/textencoder.sentis");
textEngine = WorkerFactory.CreateWorker(BackendType.GPUCompute, textencoder);
Model project = ModelLoader.Load(Application.streamingAssetsPath + "/project768_1024.sentis");
projectEngine = WorkerFactory.CreateWorker(BackendType.GPUCompute, project);
using var input = new TensorInt(new TensorShape(1, decoderTokens), TOKENS.ToArray());
var inputs = new Dictionary<string, Tensor>
{
{"input_ids", input },
{"attention_mask", encoder_attention_mask }
};
textEngine.Execute(inputs);
var output = textEngine.PeekOutput() as TensorFloat;
//Convert vectors of size 768 to size 1024
projectEngine.Execute(output);
encoder_hidden_states = projectEngine.PeekOutput() as TensorFloat;
encoder_hidden_states.TakeOwnership();
}
private class TokenizerData
{
public ModelData model;
}
private class ModelData
{
public object[][] vocab;
}
void LoadVocab()
{
var data = Newtonsoft.Json.JsonConvert.DeserializeObject<TokenizerData>(System.IO.File.ReadAllText(
Application.streamingAssetsPath+"/tokenizer.json"
));
for(int i = 0; i < data.model.vocab.Length; i++)
{
string tokenName = (string)data.model.vocab[i][0];
tokens.Add(tokenName);
}
}
// Update is called once per frame
void Update()
{
if (frame < maxFrames)
{
GetOneMusicToken();
}
else if(!hasDecodedMusic)
{
hasDecodedMusic = true;
DecodeMusic();
}
frame++;
}
void GetOneMusicToken()
{
var inputs = new Dictionary<string, Tensor>
{
{"input_ids", input_ids },
{"encoder_hidden_states", encoder_hidden_states },
{"encoder_attention_mask" , encoder_attention_mask }
};
decoderEngine.Execute(inputs);
var decoderOutput = decoderEngine.PeekOutput() as TensorFloat;
using var dec2 = ops.Mul(decoderOutput, predictability);
using var probs = ops.Softmax(dec2, 2);
probs.MakeReadable();
int OFFSET = 1;
//Add new tokens to code streams
for (int j = 0; j < numCodeBooks; j++)
{
if (frame < maxFrames - OFFSET)
{
int N = j * maxFrames + frame + OFFSET;
if (tokensSoFar[N] != DECODER_START_TOKEN)
{
tokensSoFar[N] = SelectRandomToken(probs, j, frame);
}
}
}
Replace(ref input_ids, new TensorInt(input_ids.shape, tokensSoFar.ToArray()));
Debug.Log("Frame=" + frame + "/" + maxFrames);
}
int SelectRandomToken(TensorFloat probs,int j, int frame)
{
int numItems = probs.shape[2];
float p = UnityEngine.Random.Range(0, 1f);
float tot = 0;
for(int i = 0; i < numItems; i++)
{
tot += probs[j, frame, i];
if (p <= tot) return i;
}
return numItems - 1;
}
void LoadMusicTokensToWavModel()
{
if (toWavEngine != null) return;
Model toWav = ModelLoader.Load(Application.streamingAssetsPath + "/encodec.sentis");
toWavEngine = WorkerFactory.CreateWorker(BackendType.GPUCompute, toWav);
}
void DecodeMusic()
{
Debug.Log("Please wait while music is decoded...");
LoadMusicTokensToWavModel();
using var input2 = AlignCodeStreams(input_ids);
using var wavTokens = input2.ShallowReshape(new TensorShape(1, 1, numCodeBooks, maxFrames - 3));
toWavEngine.Execute(wavTokens);
var output = toWavEngine.PeekOutput() as TensorFloat;
output.MakeReadable();
int numSamples = Mathf.Min(output.shape.length, outputFrequency * seconds);
Debug.Log("Number of samples=" + numSamples + " / " + output.shape.length);
clip = AudioClip.Create("music", numSamples, 1, outputFrequency, false);
float[] wav = new float[numSamples];
System.Array.Copy(output.ToReadOnlyArray(), wav, numSamples);
clip.SetData(wav, 0);
var audioSource = GetComponent<AudioSource>();
if (audioSource != null)
{
audioSource.PlayOneShot(clip);
}
else
{
Debug.Log("You need to attach audio source to this object to hear the music");
}
}
TensorInt AlignCodeStreams(TensorInt input)
{
if (DELAY == 0)
{
return ops.Copy(input);
}
using var input2 = ops.Cast(input, DataType.Float);
TensorFloat[] B = new TensorFloat[4];
for (int i = 0; i < 4; i++) {
using TensorFloat A = ops.Slice(input2, new int[] { i }, new int[] { i + 1 }, new int[] { 0 }, new int[] { 1 }) as TensorFloat;
B[i] = ops.Pad(A, new int[] { 0, -i, 0, i - 3 });
}
using var input3 = ops.Concat(B, 0) as TensorFloat;
for(int i = 0; i < 4; i++)
{
B[i].Dispose();
}
return ops.Cast(input3, DataType.Int) as TensorInt;
}
void Replace<T>(ref T A, T B) where T:System.IDisposable
{
A?.Dispose();
A = B;
}
private void OnDestroy()
{
input_ids?.Dispose();
encoder_attention_mask?.Dispose();
encoder_hidden_states?.Dispose();
ops?.Dispose();
decoderEngine?.Dispose();
toWavEngine?.Dispose();
projectEngine?.Dispose();
textEngine?.Dispose();
}
}
|