unity-sentis
ONNX
PB Unity
Upload RunJets.cs
e09c786 verified
raw
history blame
6.8 kB
using System.Collections.Generic;
using UnityEngine;
using Unity.Sentis;
using System.IO;
// Jets Text-To-Speech Inference
// =============================
//
// This file implements the Jets Text-to-speech model in Unity Sentis
// The model uses phenomes instead of raw text so you have to convert it first.
// Place this file on the Main Camera
// Add an audio source
// Change the inputText
// When running you can press space bar to play it again
public class RunJets : MonoBehaviour
{
public string inputText = "Once upon a time, there lived a girl called Alice. She lived in a house in the woods.";
//string inputText = "The quick brown fox jumped over the lazy dog";
//string inputText = "Hello, my name is Ginger the Giraffe!";
//string inputText = "There are many uses of the things she uses!";
//Set to true if we have put the phoneme_dict.txt in the Assets/StreamingAssets folder
bool hasPhenomeDictionary = true;
readonly string[] phonemes = new string[] {
"<blank>", "<unk>", "AH0", "N", "T", "D", "S", "R", "L", "DH", "K", "Z", "IH1",
"IH0", "M", "EH1", "W", "P", "AE1", "AH1", "V", "ER0", "F", ",", "AA1", "B",
"HH", "IY1", "UW1", "IY0", "AO1", "EY1", "AY1", ".", "OW1", "SH", "NG", "G",
"ER1", "CH", "JH", "Y", "AW1", "TH", "UH1", "EH2", "OW0", "EY2", "AO0", "IH2",
"AE2", "AY2", "AA2", "UW0", "EH0", "OY1", "EY0", "AO2", "ZH", "OW2", "AE0", "UW2",
"AH2", "AY0", "IY2", "AW2", "AA0", "\"", "ER2", "UH2", "?", "OY2", "!", "AW0",
"UH0", "OY0", "..", "<sos/eos>" };
readonly string[] alphabet = "AE1 B K D EH1 F G HH IH1 JH K L M N AA1 P K R S T AH1 V W K Y Z".Split(' ');
//Can change pitch and speed with this for a slightly different voice:
const int samplerate = 22050;
Dictionary<string, string> dict = new ();
IWorker engine;
AudioClip clip;
void Start()
{
LoadModel();
ReadDictionary();
TextToSpeech();
}
void LoadModel()
{
var model = ModelLoader.Load(Application.streamingAssetsPath + "/jets-text-to-speech.sentis");
engine = WorkerFactory.CreateWorker(BackendType.GPUCompute, model);
}
void TextToSpeech()
{
string ptext;
if (hasPhenomeDictionary)
{
ptext = TextToPhonemes(inputText);
Debug.Log(ptext);
}
else
{
//If we have no phenome dictionary we can use one of these examples:
ptext = "DH AH0 K W IH1 K B R AW1 N F AA1 K S JH AH1 M P S OW1 V ER0 DH AH0 L EY1 Z IY0 D AO1 G .";
//ptext = "W AH1 N S AH0 P AA1 N AH0 T AY1 M , AH0 F R AA1 G M EH1 T AH0 P R IH1 N S EH0 S . DH AH0 F R AA1 G K IH1 S T DH AH0 P R IH1 N S EH0 S AH0 N D B IH0 K EY1 M AH0 P R IH1 N S .";
//ptext = "D UW1 P L AH0 K EY2 T";
}
DoInference(ptext);
}
void ReadDictionary()
{
if (!hasPhenomeDictionary) return;
string[] words = File.ReadAllLines(Application.streamingAssetsPath+"/phoneme_dict.txt");
for (int i = 0; i < words.Length; i++)
{
string s = words[i];
string[] parts = s.Split();
if (parts[0] != ";;;") //ignore comments in file
{
string key = parts[0];
dict.Add(key, s.Substring(key.Length + 2));
}
}
// Add codes for punctuation to the dictionary
dict.Add(",", ",");
dict.Add(".", ".");
dict.Add("!", "!");
dict.Add("?", "?");
dict.Add("\"", "\"");
// You could add extra word pronounciations here e.g.
//dict.Add("somenewword","[phonemes]");
}
public string ExpandNumbers(string text)
{
return text
.Replace("0", " ZERO ")
.Replace("1", " ONE ")
.Replace("2", " TWO ")
.Replace("3", " THREE ")
.Replace("4", " FOUR ")
.Replace("5", " FIVE ")
.Replace("6", " SIX ")
.Replace("7", " SEVEN ")
.Replace("8", " EIGHT ")
.Replace("9", " NINE ");
}
public string TextToPhonemes(string text)
{
string output = "";
text = ExpandNumbers(text).ToUpper();
string[] words = text.Split();
for (int i = 0; i < words.Length; i++)
{
output += DecodeWord(words[i]);
}
return output;
}
//Decode the word into phenomes by looking for the longest word in the dictionary that matches
//the first part of the word and so on.
//This works fairly well but could be improved. The original paper had a model that
//dealt with guessing the phonemes of words
public string DecodeWord(string word)
{
string output = "";
int start = 0;
for (int end = word.Length; end >= 0 && start < word.Length ; end--)
{
if (end <= start) //no matches
{
start++;
end = word.Length + 1;
continue;
}
string subword = word.Substring(start, end - start);
if (dict.TryGetValue(subword, out string value))
{
output += value + " ";
start = end;
end = word.Length + 1;
}
}
return output;
}
int[] GetTokens(string ptext)
{
string[] p = ptext.Split();
var tokens = new int[p.Length];
for (int i = 0; i < tokens.Length; i++)
{
tokens[i] = Mathf.Max(0, System.Array.IndexOf(phonemes, p[i]));
}
return tokens;
}
public void DoInference(string ptext)
{
int[] tokens = GetTokens(ptext);
using var input = new TensorInt(new TensorShape(tokens.Length), tokens);
var result = engine.Execute(input);
var output = result.PeekOutput("wav") as TensorFloat;
output.MakeReadable();
var samples = output.ToReadOnlyArray();
Debug.Log($"Audio size = {samples.Length / samplerate} seconds");
clip = AudioClip.Create("voice audio", samples.Length, 1, samplerate, false);
clip.SetData(samples, 0);
Speak();
}
private void Speak()
{
AudioSource audioSource = GetComponent<AudioSource>();
if (audioSource != null)
{
audioSource.clip = clip;
audioSource.Play();
}
else
{
Debug.Log("There is no audio source");
}
}
void Update()
{
if (Input.GetKeyDown(KeyCode.Space))
{
TextToSpeech();
}
}
private void OnDestroy()
{
engine?.Dispose();
}
}