Paul Bird
commited on
Commit
•
9be3f67
1
Parent(s):
ea0d653
Upload 7 files
Browse files- RunAutomata.cs +274 -0
- lizard.onnx +3 -0
- lizard.sentis +0 -0
- poop.onnx +3 -0
- poop.sentis +0 -0
- turtle.onnx +3 -0
- turtle.sentis +0 -0
RunAutomata.cs
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
using System.Collections;
|
2 |
+
using System.Collections.Generic;
|
3 |
+
using UnityEngine;
|
4 |
+
using Unity.Sentis;
|
5 |
+
using System.IO;
|
6 |
+
using Lays = Unity.Sentis.Layers;
|
7 |
+
|
8 |
+
/*
|
9 |
+
* Neural Cellular Automata Inference Code
|
10 |
+
* =======================================
|
11 |
+
*
|
12 |
+
* Put this script on the Main Camera
|
13 |
+
* Create an image or quad in the scene.
|
14 |
+
* Assign an unlit transparent material to the image/quad.
|
15 |
+
* Draw the same material into the outputMaterial field
|
16 |
+
*
|
17 |
+
*/
|
18 |
+
public class RunAutomata : MonoBehaviour
|
19 |
+
{
|
20 |
+
//Change this to load a different model:
|
21 |
+
public AutomataNames automataName = AutomataNames.Poop;
|
22 |
+
|
23 |
+
//Reduce this to make it run slower
|
24 |
+
[Range(0f, 1f)]
|
25 |
+
public float stepSize = 1.0f;
|
26 |
+
|
27 |
+
const BackendType backend = BackendType.GPUCompute;
|
28 |
+
|
29 |
+
//Drag your unlit transparent material here for drawing the output
|
30 |
+
public Material outputMaterial;
|
31 |
+
|
32 |
+
//optional material for average alpha
|
33 |
+
public Material avgAlphaMaterial;
|
34 |
+
|
35 |
+
public enum AutomataNames { Lizard, Turtle ,Poop};
|
36 |
+
|
37 |
+
//Model parameters
|
38 |
+
const int trainedResolution = 40;
|
39 |
+
const int trainedPool = 16;
|
40 |
+
const int alphaBlocks = 4;
|
41 |
+
int m_paddedImageSize;
|
42 |
+
int m_trainedHiddenStates;
|
43 |
+
|
44 |
+
//Workers to run the networks
|
45 |
+
private IWorker m_WorkerStateUpdate;
|
46 |
+
private IWorker m_WorkerClip;
|
47 |
+
|
48 |
+
private TensorFloat m_currentStateTensor;
|
49 |
+
private RenderTexture m_currentStateTexture;
|
50 |
+
private RenderTexture m_currentBlockAlphaStateTexture;
|
51 |
+
|
52 |
+
Ops m_ops;
|
53 |
+
ITensorAllocator m_allocator;
|
54 |
+
|
55 |
+
void Start()
|
56 |
+
{
|
57 |
+
m_allocator = new TensorCachingAllocator();
|
58 |
+
m_ops = WorkerFactory.CreateOps(backend, m_allocator);
|
59 |
+
|
60 |
+
Application.targetFrameRate = 60;
|
61 |
+
|
62 |
+
LoadAutomataModel();
|
63 |
+
|
64 |
+
CreateProcessingModel();
|
65 |
+
|
66 |
+
SetupState();
|
67 |
+
|
68 |
+
SetupTextures();
|
69 |
+
|
70 |
+
DrawDotAt(m_paddedImageSize / 2, m_paddedImageSize / 2);
|
71 |
+
}
|
72 |
+
void LoadAutomataModel() {
|
73 |
+
|
74 |
+
Model m_ModelStateUpdate = null;
|
75 |
+
|
76 |
+
switch (automataName) {
|
77 |
+
case AutomataNames.Lizard:
|
78 |
+
m_ModelStateUpdate = ModelLoader.Load(Application.streamingAssetsPath + "/lizard.sentis");
|
79 |
+
break;
|
80 |
+
case AutomataNames.Turtle:
|
81 |
+
m_ModelStateUpdate = ModelLoader.Load(Application.streamingAssetsPath + "/turtle.sentis");
|
82 |
+
break;
|
83 |
+
case AutomataNames.Poop:
|
84 |
+
m_ModelStateUpdate = ModelLoader.Load(Application.streamingAssetsPath + "/poop.sentis");
|
85 |
+
break;
|
86 |
+
}
|
87 |
+
m_trainedHiddenStates = m_ModelStateUpdate.inputs[0].shape[3].value;
|
88 |
+
|
89 |
+
m_paddedImageSize = trainedResolution + trainedPool * 2;
|
90 |
+
|
91 |
+
m_WorkerStateUpdate = WorkerFactory.CreateWorker(backend, m_ModelStateUpdate, false);
|
92 |
+
|
93 |
+
}
|
94 |
+
void CreateProcessingModel() {
|
95 |
+
|
96 |
+
var m_Model = new Model();
|
97 |
+
|
98 |
+
var input0 = new Model.Input
|
99 |
+
{
|
100 |
+
name = "input0",
|
101 |
+
shape = (new SymbolicTensorShape(1, m_trainedHiddenStates, m_paddedImageSize, m_paddedImageSize)),
|
102 |
+
dataType=DataType.Float
|
103 |
+
};
|
104 |
+
|
105 |
+
var input1 = new Model.Input
|
106 |
+
{
|
107 |
+
name = "input1",
|
108 |
+
shape = (new SymbolicTensorShape(1, m_trainedHiddenStates, m_paddedImageSize, m_paddedImageSize)),
|
109 |
+
dataType = DataType.Float
|
110 |
+
};
|
111 |
+
|
112 |
+
var inputStepSize = new Model.Input
|
113 |
+
{
|
114 |
+
name = "inputStepSize",
|
115 |
+
shape = new SymbolicTensorShape(1, 1, 1, 1),
|
116 |
+
dataType = DataType.Float
|
117 |
+
};
|
118 |
+
|
119 |
+
m_Model.inputs.Add(input0);
|
120 |
+
m_Model.inputs.Add(input1);
|
121 |
+
m_Model.inputs.Add(inputStepSize);
|
122 |
+
|
123 |
+
m_Model.AddConstant(new Lays.Constant("aliveRate", new TensorFloat(new TensorShape(1, 1, 1, 1), new[] { 0.1f })));
|
124 |
+
|
125 |
+
m_Model.AddConstant(new Lays.Constant("sliceStarts", new int[] { 0, 3, 0, 0 }));
|
126 |
+
m_Model.AddConstant(new Lays.Constant("sliceEnds", new[] { 1, 4 ,m_paddedImageSize, m_paddedImageSize }));
|
127 |
+
|
128 |
+
m_Model.AddLayer(new Lays.Slice("sliceI0", "input0", "sliceStarts", "sliceEnds"));
|
129 |
+
m_Model.AddLayer(new Lays.MaxPool("maxpool0", "sliceI0", new[] { 3, 3 }, new[] { 1, 1 }, new[] { 1, 1, 1, 1 }));
|
130 |
+
m_Model.AddLayer(new Lays.Greater("pre_life_mask", "maxpool0", "aliveRate")); //INT
|
131 |
+
|
132 |
+
m_Model.AddLayer(new Lays.Mul("input1_stepsize", "input1", "inputStepSize" ));
|
133 |
+
|
134 |
+
m_Model.AddLayer(new Lays.RandomUniform("random", new int[] { 1, 1, m_paddedImageSize, m_paddedImageSize}, 0.0f, 1.0f, 0));
|
135 |
+
m_Model.AddConstant(new Lays.Constant("fireRate", new TensorFloat(new TensorShape(1, 1, 1, 1), new[] { 0.5f })));
|
136 |
+
m_Model.AddLayer(new Lays.LessOrEqual("lessEqualFireRateINT", "random", "fireRate"));
|
137 |
+
|
138 |
+
m_Model.AddLayer(new Lays.Cast("lessEqualFireRate", "lessEqualFireRateINT", DataType.Float));
|
139 |
+
|
140 |
+
m_Model.AddLayer(new Lays.Mul("mul", "input1_stepsize", "lessEqualFireRate" ));
|
141 |
+
|
142 |
+
m_Model.AddLayer(new Lays.Add("add", "input0", "mul" ));
|
143 |
+
|
144 |
+
m_Model.AddLayer(new Lays.Slice("sliceI1", "add", "sliceStarts", "sliceEnds"));
|
145 |
+
m_Model.AddLayer(new Lays.MaxPool("maxpool1", "sliceI1", new [] { 3 ,3 }, new[] { 1, 1 }, new[] {1, 1, 1, 1}));
|
146 |
+
m_Model.AddLayer(new Lays.Greater("post_life_mask", "maxpool1", "aliveRate"));
|
147 |
+
|
148 |
+
|
149 |
+
m_Model.AddLayer(new Lays.And("andINT", "pre_life_mask", "post_life_mask"));
|
150 |
+
m_Model.AddLayer(new Lays.Cast("and", "andINT", DataType.Float));
|
151 |
+
|
152 |
+
m_Model.AddLayer(new Lays.Mul("outputState", "add", "and" ));
|
153 |
+
|
154 |
+
m_Model.AddConstant(new Lays.Constant("sliceStarts2", new[] { 0, 0, trainedPool, trainedPool }));
|
155 |
+
m_Model.AddConstant(new Lays.Constant("sliceEnds2", new[] { 1, 4, m_paddedImageSize - trainedPool, m_paddedImageSize - trainedPool }));
|
156 |
+
|
157 |
+
m_Model.AddLayer(new Lays.Slice("outputImage", "outputState", "sliceStarts2", "sliceEnds2"));
|
158 |
+
|
159 |
+
m_Model.AddLayer(new Lays.Slice("outputIC", "outputImage", "sliceStarts", "sliceEnds"));
|
160 |
+
|
161 |
+
int blockSize = trainedResolution / alphaBlocks;
|
162 |
+
m_Model.AddLayer(new Lays.AveragePool("avgPoolBlocks", "outputIC", new[] { blockSize, blockSize }, new[] { blockSize, blockSize }, new[] { 1, 1, 1, 1 }));
|
163 |
+
|
164 |
+
m_Model.outputs.Add("outputState");
|
165 |
+
m_Model.outputs.Add("outputImage");
|
166 |
+
m_Model.outputs.Add("avgPoolBlocks");
|
167 |
+
|
168 |
+
m_WorkerClip = WorkerFactory.CreateWorker(BackendType.GPUCompute, m_Model);
|
169 |
+
|
170 |
+
}
|
171 |
+
|
172 |
+
void SetupState()
|
173 |
+
{
|
174 |
+
float[] data = new float[1 * m_paddedImageSize * m_paddedImageSize * m_trainedHiddenStates];
|
175 |
+
m_currentStateTensor = new TensorFloat(new TensorShape(1, m_trainedHiddenStates, m_paddedImageSize, m_paddedImageSize), data);
|
176 |
+
}
|
177 |
+
|
178 |
+
void SetupTextures()
|
179 |
+
{
|
180 |
+
m_currentStateTexture = new RenderTexture(trainedResolution, trainedResolution, 0)
|
181 |
+
{
|
182 |
+
enableRandomWrite = true
|
183 |
+
};
|
184 |
+
outputMaterial.mainTexture = m_currentStateTexture;
|
185 |
+
|
186 |
+
if (avgAlphaMaterial)
|
187 |
+
{
|
188 |
+
m_currentBlockAlphaStateTexture = new RenderTexture(alphaBlocks, alphaBlocks, 0)
|
189 |
+
{
|
190 |
+
enableRandomWrite = true
|
191 |
+
};
|
192 |
+
outputMaterial.mainTexture = m_currentBlockAlphaStateTexture;
|
193 |
+
}
|
194 |
+
}
|
195 |
+
|
196 |
+
void DrawDotAt(int x,int y)
|
197 |
+
{
|
198 |
+
m_currentStateTensor.MakeReadable();
|
199 |
+
|
200 |
+
float[] data = m_currentStateTensor.ToReadOnlyArray();
|
201 |
+
for (int k = 3; k < 16; k++)
|
202 |
+
{
|
203 |
+
data[m_paddedImageSize * m_paddedImageSize * k + m_paddedImageSize * y + x] = 1f;
|
204 |
+
}
|
205 |
+
Replace(ref m_currentStateTensor, new TensorFloat(m_currentStateTensor.shape, data));
|
206 |
+
}
|
207 |
+
|
208 |
+
void Update()
|
209 |
+
{
|
210 |
+
DoInference();
|
211 |
+
if (Input.GetKeyDown(KeyCode.Escape))
|
212 |
+
{
|
213 |
+
Application.Quit();
|
214 |
+
}
|
215 |
+
if (Input.GetKeyDown(KeyCode.Space))
|
216 |
+
{
|
217 |
+
DrawDotAt(UnityEngine.Random.Range(0, m_paddedImageSize), UnityEngine.Random.Range(0, m_paddedImageSize));
|
218 |
+
}
|
219 |
+
}
|
220 |
+
|
221 |
+
void Replace(ref TensorFloat A, TensorFloat B)
|
222 |
+
{
|
223 |
+
A?.Dispose();
|
224 |
+
A = B;
|
225 |
+
}
|
226 |
+
|
227 |
+
void DoInference() {
|
228 |
+
|
229 |
+
using var stepSizeTensor = new TensorFloat(new TensorShape(1, 1, 1, 1), new float[] { stepSize });
|
230 |
+
|
231 |
+
using var currentStateTensorT = m_ops.Transpose(m_currentStateTensor, new int[] { 0, 2, 3, 1 });
|
232 |
+
|
233 |
+
m_WorkerStateUpdate.Execute(currentStateTensorT);
|
234 |
+
TensorFloat outputStateT = m_WorkerStateUpdate.PeekOutput() as TensorFloat;
|
235 |
+
|
236 |
+
using var outputState = m_ops.Transpose(outputStateT, new int[] { 0, 3, 1, 2 });
|
237 |
+
|
238 |
+
var inputs = new Dictionary<string, Tensor>() {
|
239 |
+
{ "input0", m_currentStateTensor }, //float
|
240 |
+
{ "input1", outputState }, //float
|
241 |
+
{ "inputStepSize", stepSizeTensor } //float
|
242 |
+
};
|
243 |
+
m_WorkerClip.Execute(inputs);
|
244 |
+
|
245 |
+
TensorFloat clippedState = m_WorkerClip.PeekOutput("outputState") as TensorFloat;
|
246 |
+
TensorFloat outputImage = m_WorkerClip.PeekOutput("outputImage") as TensorFloat;
|
247 |
+
TensorFloat blockAvgAlphaState = m_WorkerClip.PeekOutput("avgPoolBlocks") as TensorFloat;
|
248 |
+
|
249 |
+
if (m_currentStateTexture)
|
250 |
+
{
|
251 |
+
TextureConverter.RenderToTexture(outputImage, m_currentStateTexture);
|
252 |
+
}
|
253 |
+
|
254 |
+
if (m_currentBlockAlphaStateTexture)
|
255 |
+
{
|
256 |
+
TextureConverter.RenderToTexture(blockAvgAlphaState, m_currentBlockAlphaStateTexture);
|
257 |
+
}
|
258 |
+
|
259 |
+
Replace(ref m_currentStateTensor, clippedState);
|
260 |
+
m_currentStateTensor.TakeOwnership();
|
261 |
+
}
|
262 |
+
|
263 |
+
void OnDestroy()
|
264 |
+
{
|
265 |
+
m_currentStateTensor.Dispose();
|
266 |
+
|
267 |
+
m_WorkerStateUpdate.Dispose();
|
268 |
+
m_WorkerClip.Dispose();
|
269 |
+
|
270 |
+
m_ops?.Dispose();
|
271 |
+
m_allocator?.Dispose();
|
272 |
+
}
|
273 |
+
|
274 |
+
}
|
lizard.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc3f2761a6c13c3985c5c2d4afdb8495c63916be0166708b6c8de5495301af9
|
3 |
+
size 62332
|
lizard.sentis
ADDED
Binary file (67 kB). View file
|
|
poop.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3178f88f94defda03b83b33b8a9c6326edc16dfd496ad16e2705a5ac86be35ef
|
3 |
+
size 62330
|
poop.sentis
ADDED
Binary file (67 kB). View file
|
|
turtle.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d64f01dd80339ec69bebe2db259cad36ed6d2f1fe7c5d5c12d3e309a6e877ee2
|
3 |
+
size 75209
|
turtle.sentis
ADDED
Binary file (79.1 kB). View file
|
|